CAREER: Parsimonious Models for Redistricting

职业:重新划分选区的简约模型

基本信息

  • 批准号:
    1942065
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) grant promotes the national welfare by supporting scientific research into improved methods for redistricting. Common criticisms of districting plans include unequal district populations, a lack of contiguity or compactness, the needless splitting of counties (or other political subdivisions), or the use of demographic characteristics of the population to ensure anomalous representation. The challenge of neutrally designing districting plans leads to many questions about baselines and tradeoffs. This project addresses these challenges through optimization methods that provide a mathematically sound, transparent approach. Current optimization formulations lead to very large problems that cannot be solved using existing methods. This research will: (i) investigate methods for establishing the limits of what is possible in a redistricting plan, and (ii) provide politically neutral methods that can inform the public about how well various constraints can restrain manipulation. The three components of the education plan will serve to excite students about a career in operations research. The PI will engage and mentor graduate and undergraduate students in the research. Students from underrepresented populations will actively be sought to work on the project, in part, through collaboration with the Oklahoma Louis Stokes Alliance for Minority Participation. Existing exact models for redistricting do not scale well. Even the best of them begin to struggle on county-level instances of redistricting due, in part, to the large number of variables defining these models. To satisfy critical population-equality constraints requires a finer level of granularity, which results in an even larger problem. This research considers new models and algorithms that have the potential to handle significantly larger instances. This is enabled, in part, by the newly researched Arborescence Models, which exploit planar graph duality to simultaneously achieve small size and remarkable strength. Some of the researched techniques for handling contiguity and compactness constraints, e.g., length-bounded cuts, are new and require few or no additional variables. These methods go well beyond the many existing approaches based on multi-commodity flows or layered graphs. Investigation of these methods have the potential to enable new solutions to network problems that have distance, latency, and compactness constraints.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项教职早期职业发展(职业)补助金通过支持改进重新划分选区的方法的科学研究来促进国家福利。对分区计划的常见批评包括:选区人口不平等、缺乏邻接性或紧凑性、县(或其他政治分区)不必要的分裂,或利用人口的人口特征来确保不正常的代表性。中立地设计选区划分计划的挑战导致了许多关于基线和权衡的问题。这个项目通过优化方法来解决这些挑战,这些方法提供了一种数学上合理、透明的方法。目前的优化公式导致了使用现有方法无法解决的非常大的问题。这项研究将:(I)调查确定重新划分选区计划中可能的限度的方法,以及(Ii)提供政治中立的方法,告知公众各种限制措施可以如何有效地限制操纵。教育计划的三个组成部分将有助于激发学生对运筹学职业的兴趣。PI将参与并指导研究生和本科生进行研究。部分通过与俄克拉荷马州路易斯·斯托克斯少数民族参与联盟的合作,将积极寻求来自代表性不足人群的学生参与该项目。现有的精确的重新划分选区的模型不能很好地扩展。即使是其中最优秀的人也开始在县级重新划分选区的实例中苦苦挣扎,部分原因是定义这些模型的大量变量。要满足关键的人口相等约束,需要更精细的粒度,这会导致更大的问题。这项研究考虑了新的模型和算法,这些模型和算法有可能处理更大的实例。这在一定程度上是由于新研究的树状模型,它利用平面图的对偶性同时实现了小尺寸和显著的强度。一些被研究的用于处理邻接性和紧凑性约束的技术,例如,长度限制切割,是新的,并且需要很少或不需要额外的变量。这些方法远远超出了现有的许多基于多种商品流动或分层图的方法。对这些方法的调查有可能为具有距离、延迟和紧凑性限制的网络问题提供新的解决方案。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Worst-case analysis of clique MIPs
  • DOI:
    10.1007/s10107-021-01706-2
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    M. J. Naderi;Austin Buchanan;J. Walteros
  • 通讯作者:
    M. J. Naderi;Austin Buchanan;J. Walteros
On Fault-Tolerant Low-Diameter Clusters in Graphs
关于图中的容错小直径簇
  • DOI:
    10.1287/ijoc.2022.1231
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Lu, Yajun;Salemi, Hosseinali;Balasundaram, Balabhaskar;Buchanan, Austin
  • 通讯作者:
    Buchanan, Austin
Political districting to minimize cut edges
  • DOI:
    10.1007/s12532-022-00221-5
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Hamidreza Validi;Austin Buchanan
  • 通讯作者:
    Hamidreza Validi;Austin Buchanan
Linear-size formulations for connected planar graph partitioning and political districting
连接平面图分区和政治分区的线性大小公式
  • DOI:
    10.1007/s11590-023-02070-0
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Zhang, Jack;Validi, Hamidreza;Buchanan, Austin;Hicks, Illya V.
  • 通讯作者:
    Hicks, Illya V.
Imposing Contiguity Constraints in Political Districting Models
  • DOI:
    10.1287/opre.2021.2141
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hamidreza Validi;Austin Buchanan;Eugene Lykhovyd
  • 通讯作者:
    Hamidreza Validi;Austin Buchanan;Eugene Lykhovyd
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Austin Buchanan其他文献

Solving maximum clique in sparse graphs: an $$O(nm+n2^{d/4})$$ algorithm for $$d$$ -degenerate graphs
  • DOI:
    10.1007/s11590-013-0698-2
  • 发表时间:
    2013-10-18
  • 期刊:
  • 影响因子:
    1.100
  • 作者:
    Austin Buchanan;Jose L. Walteros;Sergiy Butenko;Panos M. Pardalos
  • 通讯作者:
    Panos M. Pardalos
On provably best construction heuristics for hard combinatorial optimization problems
关于硬组合优化问题的可证明最佳构造启发式
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Sera Kahruman;Austin Buchanan;S. Butenko;O. Prokopyev
  • 通讯作者:
    O. Prokopyev
Solving maximum clique in sparse graphs: an $$O(nm+n2^{d/4})$$O(nm+n2d/4) algorithm for $$d$$d-degenerate graphs
求解稀疏图中的最大团:$$O(nm n2^{d/4})$$O(nm n2d/4) 算法用于 $$d$$d 简并图
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Austin Buchanan;J. Walteros;S. Butenko;P. Pardalos
  • 通讯作者:
    P. Pardalos
On imposing connectivity constraints in integer programs
关于在整数程序中施加连通性约束
  • DOI:
    10.1007/s10107-017-1117-8
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Yiming Wang;Austin Buchanan;S. Butenko
  • 通讯作者:
    S. Butenko
Tight extended formulations for independent set ∗
独立集的紧扩展公式*
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Austin Buchanan;S. Butenko
  • 通讯作者:
    S. Butenko

Austin Buchanan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Austin Buchanan', 18)}}的其他基金

Imposing Connectivity Constraints in Large-Scale Network Problems
在大规模网络问题中施加连接约束
  • 批准号:
    1662757
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: CIF: Medium: Understanding Robustness via Parsimonious Structures.
合作研究:CIF:中:通过简约结构了解鲁棒性。
  • 批准号:
    2212458
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Understanding Robustness via Parsimonious Structures.
合作研究:CIF:中:通过简约结构了解鲁棒性。
  • 批准号:
    2212457
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Parsimonious high-dimensional and matrix-variate copula modeling
简约高维矩阵变量联结建模
  • 批准号:
    DGECR-2022-00447
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Launch Supplement
Parsimonious high-dimensional and matrix-variate copula modeling
简约高维矩阵变量联结建模
  • 批准号:
    RGPIN-2022-03867
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Parsimonious statistical modelling for high-dimensional problems
高维问题的简约统计建模
  • 批准号:
    19K23193
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Classification via parsimonious multiple scaled mixtures
通过简约的多尺度混合物进行分类
  • 批准号:
    537271-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    University Undergraduate Student Research Awards
CDS&E: A Computational Framework for Parsimonious Sonar Sensing
CDS
  • 批准号:
    1762577
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Parsimonious Anomaly Detection in Sequencing Data
BIGDATA:IA:协作研究:测序数据中的简约异常检测
  • 批准号:
    1741264
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Flexible Parsimonious Models for Complex Data
职业:复杂数据的灵活简约模型
  • 批准号:
    1653017
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
BIGDATA: IA: Collaborative Research: Parsimonious Anomaly Detection in Sequencing Data
BIGDATA:IA:协作研究:测序数据中的简约异常检测
  • 批准号:
    1741490
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了