CDS&E: A Computational Framework for Parsimonious Sonar Sensing

CDS

基本信息

项目摘要

Autonomous sensing systems play an increasingly important role in health care, manufacturing, transportation, disaster response, national security and other activities. Sensing systems in platforms such as autonomous vehicles often require clear lines-of-sight and are inefficient. They generate large amounts of data that cannot be processed by small platforms with limited onboard computation. This project lays the foundation for a new transformative data-centered efficient sensing platform based on bats' bio-sonar. The researchers will develop a computational framework that facilitates estimation of environmental parameters for sensing and navigation--enabling enhanced performance in complex environments and with reduced hardware requirements. This enables the use of autonomous devices for a broad scope of applications ranging from cooperative robots to medical devices and micro-air vehicles. The project will also offer multidisciplinary training to university students and will engage K-12 students in outreach activities.This project will develop a computational approach to advance the discovery and understanding of parsimonious sonar sensing in complex environments. The researchers will perform large-scale simulations to generate densely vegetated environments and vegetation echoes; develop novel statistical models to extract echo signatures and learn their relation to environmental parameters and design dynamic algorithms for sensing and navigation. This computational approach provides enabling tools--validated using simulated and experimental data--to advance the community's ability to develop adaptive models for various sensing scenarios and enable novel sensing paradigms. Simulation algorithms and algorithms for sensing and navigation will be integrated into open source packages and made available on GitHub. The conceptual framework will be published in appropriate journals.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自主传感系统在医疗保健、制造业、交通运输、灾害响应、国家安全和其他活动中发挥着越来越重要的作用。自动驾驶汽车等平台中的传感系统通常需要清晰的视线,效率低下。它们生成的大量数据无法由机载计算有限的小型平台处理。该项目为基于蝙蝠生物声纳的以数据为中心的新型高效传感平台奠定了基础。研究人员将开发一种计算框架,促进对传感和导航环境参数的估计,从而在复杂环境中提高性能并降低硬件要求。这使得自主设备能够用于从协作机器人到医疗设备和微型飞行器的广泛应用。该项目还将为大学生提供多学科培训,并将让K-12学生参与外联活动,该项目将开发一种计算方法,以促进在复杂环境中发现和理解吝啬声纳传感。 研究人员将进行大规模模拟,以生成密集的植被环境和植被回波;开发新的统计模型来提取回波特征,并了解它们与环境参数的关系,并设计用于传感和导航的动态算法。这种计算方法提供了使能工具-使用模拟和实验数据进行验证-以提高社区为各种传感场景开发自适应模型的能力,并实现新颖的传感模式。 传感和导航的仿真算法和算法将被集成到开源软件包中,并在GitHub上提供。 该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Crop Height and Plot Estimation for Phenotyping from Unmanned Aerial Vehicles using 3D LiDAR
使用 3D LiDAR 对无人机表型进行作物高度和地块估计
Recreating Bat Behavior on Quad-rotor UAVs-A Simulation Approach
  • DOI:
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. H. Tanveer;Antony Thomas;Xiaowei Wu;R. Müller;Pratap Tokekar;Hongxiao Zhu
  • 通讯作者:
    M. H. Tanveer;Antony Thomas;Xiaowei Wu;R. Müller;Pratap Tokekar;Hongxiao Zhu
Fast Simulation of Trees and Forests for Bat-inspired Sonar Sensing
快速模拟树木和森林以实现蝙蝠声纳传感
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hongxiao Zhu其他文献

Web-based Supplementary Materials for “ Robust Classification of Functional and Quantitative Image Data using Functional Mixed Models ”
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hongxiao Zhu
  • 通讯作者:
    Hongxiao Zhu
The role of proximity to waterfront in residents' relocation decision-making post-Hurricane Sandy
  • DOI:
    10.1016/j.ocecoaman.2018.01.002
  • 发表时间:
    2018-03-15
  • 期刊:
  • 影响因子:
  • 作者:
    Anamaria Bukvic;Hongxiao Zhu;Rita Lavoie;Austin Becker
  • 通讯作者:
    Austin Becker
Functional data classification and covariance estimation
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hongxiao Zhu
  • 通讯作者:
    Hongxiao Zhu
Functional Data Classification in Cervical Pre-cancer Diagnosis — A Bayesian Variable Selection Model
宫颈癌前诊断中的功能数据分类——贝叶斯变量选择模型
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hongxiao Zhu;M. Vannucci;D. Cox
  • 通讯作者:
    D. Cox
A Bayesian Analysis of Copy Number Variations in Array Comparative Genomic Hybridization Data
阵列比较基因组杂交数据中拷贝数变异的贝叶斯分析
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaowei Wu;Hongxiao Zhu
  • 通讯作者:
    Hongxiao Zhu

Hongxiao Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hongxiao Zhu', 18)}}的其他基金

Statistical Analysis of Complex, Highly-structured Functional Data
复杂、高度结构化的功能数据的统计分析
  • 批准号:
    1611901
  • 财政年份:
    2016
  • 资助金额:
    $ 66.85万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CRII: OAC: A Multi-fidelity Computational Framework for Discovering Governing Equations Under Uncertainty
CRII:OAC:用于发现不确定性下控制方程的多保真度计算框架
  • 批准号:
    2348495
  • 财政年份:
    2024
  • 资助金额:
    $ 66.85万
  • 项目类别:
    Standard Grant
A Neural and Computational Framework of the Effort Paradox
努力悖论的神经和计算框架
  • 批准号:
    EP/Y014561/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.85万
  • 项目类别:
    Research Grant
CAREER: A multi-scale and hierarchical computational framework to model III-nitride devices operating in the near-terahertz regime
职业:多尺度和分层计算框架,用于模拟在近太赫兹区域运行的 III 族氮化物器件
  • 批准号:
    2237663
  • 财政年份:
    2023
  • 资助金额:
    $ 66.85万
  • 项目类别:
    Continuing Grant
Developing an Experimental and Computational Framework for Studying Neural Representations of Tactile Motion on the Hand
开发用于研究手部触觉运动神经表征的实验和计算框架
  • 批准号:
    10732095
  • 财政年份:
    2023
  • 资助金额:
    $ 66.85万
  • 项目类别:
CRII: OAC: A Computational Framework for Studying Transport Phenomena in Complex Networks: From Biological Towards Sustainable and Resilient Engineering Networks
CRII:OAC:研究复杂网络中传输现象的计算框架:从生物网络到可持续和弹性工程网络
  • 批准号:
    2349122
  • 财政年份:
    2023
  • 资助金额:
    $ 66.85万
  • 项目类别:
    Standard Grant
Alternative protein sources: growing the next generation computational modelling framework
替代蛋白质来源:发展下一代计算模型框架
  • 批准号:
    2886049
  • 财政年份:
    2023
  • 资助金额:
    $ 66.85万
  • 项目类别:
    Studentship
A New Computational Framework for Superior Image Reconstruction in Limited Data Quantitative Photoacoustic Tomography
有限数据定量光声断层扫描中卓越图像重建的新计算框架
  • 批准号:
    2309491
  • 财政年份:
    2023
  • 资助金额:
    $ 66.85万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: A multi-fidelity computational framework for vascular mechanobiology in SimVascular
合作研究:框架:SimVasulous 中血管力学生物学的多保真度计算框架
  • 批准号:
    2310910
  • 财政年份:
    2023
  • 资助金额:
    $ 66.85万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: A multi-fidelity computational framework for vascular mechanobiology in SimVascular
合作研究:框架:SimVasulous 中血管力学生物学的多保真度计算框架
  • 批准号:
    2310909
  • 财政年份:
    2023
  • 资助金额:
    $ 66.85万
  • 项目类别:
    Standard Grant
CAREER: Probabilistic Framework for Self-Supervised, Data-Driven Computational Imaging
职业:自我监督、数据驱动的计算成像的概率框架
  • 批准号:
    2236796
  • 财政年份:
    2023
  • 资助金额:
    $ 66.85万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了