Parsimonious high-dimensional and matrix-variate copula modeling
简约高维矩阵变量联结建模
基本信息
- 批准号:RGPIN-2022-03867
- 负责人:
- 金额:$ 1.38万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With technology yielding larger and more diverse data collections, many scientific domains seek innovative ways to investigate "big data". Although statistical methods are the standard scientific procedure for analyzing and interpreting data, many of the standard approaches cannot be used to analyze big data. This inability can be due to large computational burdens, or in some cases, the standard methods cannot be extended to handle large numbers of variables. This proposed research will develop novel methods for the assignment of observations in big data to groups based on commonalities, without any prior knowledge of the correct grouping. This procedure is called clustering and is a type of unsupervised learning method as it does not assume prior knowledge of the correct assignments or even the number of groups. Clustering is used to identify underlying structures and patterns in the data and may be used to localize analyses into groups. This research will focus on developing innovative clustering methods to analyze data with many recorded variables that have socio-economic and environmental importance (e.g., gene expression, economic, health, and geo-referenced spatial data) as well as three-way data (e.g., gray-scale images and multiple variables recorded over time aka "longitudinal data"). This work will advance our understanding in the use of clustering to model big data. Methods developed will be presented in freely available statistical software packages in R for use by practitioners and researchers. This research will impact the analysis of big data in diverse fields including medicine, economics, marketing, food science, biology, and environmental sciences.
随着技术产生更大、更多样化的数据收集,许多科学领域都在寻求创新的方法来研究“大数据”。尽管统计方法是分析和解释数据的标准科学程序,但许多标准方法不能用于分析大数据。这种无能为力的原因可能是计算负担太大,或者在某些情况下,标准方法无法扩展以处理大量变量。这项拟议的研究将开发新的方法,将大数据中的观测数据分配给基于共性的组,而不需要事先知道正确的分组。这个过程被称为聚类,是一种无监督的学习方法,因为它不假设正确分配的先验知识,甚至不需要了解组的数量。聚类用于识别数据中的底层结构和模式,并可用于将分析本地化为组。这项研究将侧重于开发创新的聚类方法,以分析具有社会经济和环境重要性的许多记录变量的数据(例如,基因表达、经济、健康和地理参考空间数据)以及三向数据(例如,随着时间的推移记录的灰度级图像和多个变量,即“纵向数据”)。这项工作将增进我们对使用集群为大数据建模的理解。所开发的方法将在R中免费提供统计软件包,供从业人员和研究人员使用。这项研究将影响医学、经济学、营销学、食品科学、生物学和环境科学等多个领域的大数据分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Murphy, Orla其他文献
The Efficacy of Warm Compresses in the Treatment of Meibomian Gland Dysfunction and Demodex Folliculorum Blepharitis
- DOI:
10.1080/02713683.2019.1686153 - 发表时间:
2019-11-17 - 期刊:
- 影响因子:2
- 作者:
Murphy, Orla;O'Dwyer, Veronica;Lloyd-Mckernan, Aoife - 通讯作者:
Lloyd-Mckernan, Aoife
Exploring Recommendations for Child and Adolescent Fundamental Movement Skills Development: A Narrative Review.
- DOI:
10.3390/ijerph20043278 - 发表时间:
2023-02-13 - 期刊:
- 影响因子:0
- 作者:
O'Brien, Wesley;Khodaverdi, Zeinab;Bolger, Lisa;Murphy, Orla;Philpott, Conor;Kearney, Philip E - 通讯作者:
Kearney, Philip E
The effect of lid hygiene on the tear film and ocular surface, and the prevalence of Demodex blepharitis in university students
- DOI:
10.1016/j.clae.2019.09.003 - 发表时间:
2020-04-01 - 期刊:
- 影响因子:3.2
- 作者:
Murphy, Orla;O' Dwyer, Veronica;Lloyd-McKernan, Aoife - 通讯作者:
Lloyd-McKernan, Aoife
Impact of the COVID-19 pandemic on anaesthesia specialty training: a single-centre quantitative analysis.
- DOI:
10.1016/j.bjao.2022.100117 - 发表时间:
2023-03 - 期刊:
- 影响因子:0
- 作者:
Hughes, Lauren;Murphy, Orla;Lenihan, Martin;Mhuircheartaigh, Roisin Ni;Wall, Thomas P - 通讯作者:
Wall, Thomas P
Ocular Demodex folliculorum: prevalence and associated symptoms in an Irish population
- DOI:
10.1007/s10792-018-0826-1 - 发表时间:
2019-02-01 - 期刊:
- 影响因子:1.6
- 作者:
Murphy, Orla;O'Dwyer, Veronica;Lloyd-McKernan, Aoife - 通讯作者:
Lloyd-McKernan, Aoife
Murphy, Orla的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Murphy, Orla', 18)}}的其他基金
Parsimonious high-dimensional and matrix-variate copula modeling
简约高维矩阵变量联结建模
- 批准号:
DGECR-2022-00447 - 财政年份:2022
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Launch Supplement
Statistical methodology for modeling dependence in multivariate non-continuous data
多元非连续数据中依赖性建模的统计方法
- 批准号:
444680-2013 - 财政年份:2015
- 资助金额:
$ 1.38万 - 项目类别:
Postgraduate Scholarships - Doctoral
Statistical methodology for modeling dependence in multivariate non-continuous data
多元非连续数据中依赖性建模的统计方法
- 批准号:
444680-2013 - 财政年份:2014
- 资助金额:
$ 1.38万 - 项目类别:
Postgraduate Scholarships - Doctoral
Statistical methodology for modeling dependence in multivariate non-continuous data
多元非连续数据中依赖性建模的统计方法
- 批准号:
444680-2013 - 财政年份:2013
- 资助金额:
$ 1.38万 - 项目类别:
Postgraduate Scholarships - Doctoral
Application of metaelliptical copula methods for flood data from the St. Lawrence River
元椭圆联结法在圣劳伦斯河洪水数据中的应用
- 批准号:
408249-2011 - 财政年份:2011
- 资助金额:
$ 1.38万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Application of DEA on GLSS and a comparison study
DEA在GLSS中的应用及比较研究
- 批准号:
397644-2010 - 财政年份:2010
- 资助金额:
$ 1.38万 - 项目类别:
University Undergraduate Student Research Awards
Laser Assisted Collisions and Electron -ion Collisions
激光辅助碰撞和电子离子碰撞
- 批准号:
386234-2009 - 财政年份:2009
- 资助金额:
$ 1.38万 - 项目类别:
University Undergraduate Student Research Awards
Application of DEA on GLSS
DEA在GLSS中的应用
- 批准号:
382648-2009 - 财政年份:2009
- 资助金额:
$ 1.38万 - 项目类别:
University Undergraduate Student Research Awards
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
应用iTRAQ定量蛋白组学方法分析乳腺癌新辅助化疗后相关蛋白质的变化
- 批准号:81150011
- 批准年份:2011
- 资助金额:10.0 万元
- 项目类别:专项基金项目
肝脏管道系统数字化及三维成像的研究
- 批准号:30470493
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Integrated Molecular and Cellular Drivers of Alveologenesis
肺泡发生的综合分子和细胞驱动因素
- 批准号:
10637764 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
Multicellular Organotypic Mouse Model of Alcoholic Liver Disease
酒精性肝病的多细胞器官型小鼠模型
- 批准号:
10667672 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
Engineering Human Organizer To Study Left-Right Symmetry Breaking
工程人类组织者研究左右对称性破缺
- 批准号:
10667938 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
Parallel Characterization of Genetic Variants in Chemotherapy-Induced Cardiotoxicity Using iPSCs
使用 iPSC 并行表征化疗引起的心脏毒性中的遗传变异
- 批准号:
10663613 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别: