CAREER: Multi-functional interlayer-RF resonators as a platform for passive and wireless biosensing
职业:多功能层间射频谐振器作为无源和无线生物传感平台
基本信息
- 批准号:1942364
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-invasive, wireless-enabled medical devices or biosensors have been emerging as powerful tools to track human performance, biomarkers, and wellness. Within this class of devices, conformal, point-of-care interfaces in the form of flexible devices have become popular due to their low form factor, reduced user burden, and ability to monitor physiological parameters (i.e., heartbeat, acceleration, glucose etc.) on complex surfaces/environments. Existing biosensors within such devices often suffer from large physical size, need for power, short lifetime, and low sensitivity. The objective of this CAREER project is to study, design, and develop wireless-enabled passive radio frequency identification device (RFID) type biosensors. These could be attached, embedded, or potentially implanted to new areas and wirelessly monitor their host environments. These sensors, along with their sensing metal patterns developed on different layers, contain an intermediate layer of nanoporous materials that will absorb, swell or deform in the presence of specific chemical stimuli causing their resonant frequencies to change. This change in the sensor property as function of the change in the stimuli of host environment will be used as a detection mechanism. The proposed new interlayer materials could be membranes, separators, deformable materials, temperature/pH/metal-responsive polymers, and more. Many of these materials have long-lifetimes and possess no degradative mechanism. Significantly improved, conformal, versatile sensors with programmable sensitivity and selectivity are the project goals. Such devices could potentially integrate with living systems in new ways and enable new applications in wireless health. The unique education and outreach program proposed in this project is focused on powering the creativity and imagination of younger (and often underrepresented) students. Potential technical skills to be learned by undergraduate students include: fabrication experience (metrology, photolithography, 3-D printing), scanning-electron microscopy, experimental methodology, numerical/analytical modelling, data analysis, and computer aided design (CAD). Creating a long-term interest in STEM by teaching fun, biocompatible/safe fabrication procedures that can be performed by students of all ages and skill levels is proposed. Research efforts of this project will be taught in various summer tech camps run by the University of California Irvine (UCI), a Hispanic Serving Institution (HSI), through programs like BuildCamp and FABcamp. This project will develop next-generation, passive wireless biosensors with tunable sensitivity and selectivity. The focus is on utilizing a sensing modality that can support native wireless read-out and robust, long-term operation. The core sensor is composed of stacked and resonant-coupled split ring coils (or multi-turn antennas) that contain interlayer materials that absorb, swell, or deform in response to physical stimuli. The development of new fabrication techniques to fuse soft or nanoporous materials with metals into multi-functional constructs will be investigated. This will enable RF analytical biosensors with programmable sensitivity and selectivity. The approach will be to utilize membranes that are able to either selectively absorb analytes from complex biofluids, or heavily swell in response to a specific analyte. Four types of membranes: ion-selective, polymer-aerogel, glucose-responsive, and modified biopolymer will be studied as potential interlayer materials. Theoretical and computational studies on how the unique electromagnetic and bio-interactive physics of respective materials combine to impact sensor performance will be studied and analyzed. The experimental studies on sensor behavior include sensor measurement in mixtures of analyte, the synthesis of sensor-circuits that enable facile and accessible read-out, as well as the studying of arraying as a means of enhancing response.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非侵入性的无线医疗设备或生物传感器已经成为跟踪人类表现,生物标志物和健康的强大工具。在这类设备中,柔性设备形式的适形护理点接口由于其低形状因子、减少的用户负担和监测生理参数(即,心跳、加速度、血糖等)在复杂的表面/环境中。此类装置内的现有生物传感器通常遭受大的物理尺寸、对功率的需求、短寿命和低灵敏度。本CAREER项目的目标是研究、设计和开发无线启用的无源射频识别设备(RFID)型生物传感器。这些可以连接,嵌入或潜在植入到新的区域,并无线监控其宿主环境。这些传感器,沿着在不同层上形成的它们的感测金属图案,包含纳米多孔材料的中间层,该纳米多孔材料在特定化学刺激存在下将吸收、膨胀或变形,从而导致它们的共振频率改变。作为宿主环境的刺激的变化的函数的传感器特性的这种变化将被用作检测机制。提出的新的夹层材料可以是膜、分离器、可变形材料、温度/pH/金属响应聚合物等。其中许多材料的使用寿命很长,并且没有降解机制。该项目的目标是显著改进的、适形的、具有可编程灵敏度和选择性的多功能传感器。 这些设备可能以新的方式与生命系统集成,并在无线健康领域实现新的应用。在这个项目中提出的独特的教育和推广计划的重点是推动年轻(往往代表性不足)学生的创造力和想象力。本科生要学习的潜在技术技能包括:制造经验(计量,光刻,3D打印),扫描电子显微镜,实验方法,数值/分析建模,数据分析和计算机辅助设计(CAD)。创建一个长期的兴趣干通过教学的乐趣,生物相容性/安全的制造程序,可以由所有年龄和技能水平的学生进行建议。该项目的研究工作将在由加州欧文大学(UCI),一个西班牙裔服务机构(HSI),通过像BuildCamp和FABcamp计划运行的各种夏季技术夏令营授课。该项目将开发具有可调灵敏度和选择性的下一代无源无线生物传感器。重点是利用可以支持本地无线读出和鲁棒的长期操作的感测模态。 核心传感器由堆叠和谐振耦合的分裂环线圈(或多匝天线)组成,其包含响应于物理刺激而吸收、膨胀或变形的夹层材料。 将研究新的制造技术的发展,以将软或纳米多孔材料与金属融合成多功能结构。这将使射频分析生物传感器具有可编程的灵敏度和选择性。该方法将利用能够从复杂的生物流体中选择性地吸收分析物或响应于特定分析物而严重溶胀的膜。四种类型的膜:离子选择性、聚合物气凝胶、葡萄糖响应性和改性生物聚合物将被研究作为潜在的夹层材料。将研究和分析关于各自材料的独特电磁和生物相互作用物理学如何联合收割机结合以影响传感器性能的理论和计算研究。传感器行为的实验研究包括传感器在分析物混合物中的测量,传感器电路的合成,使读取变得容易和容易,以及阵列作为增强响应的一种手段的研究。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Laser-Induced Graphene-Based Smart Textiles for Wireless Cross-Body Metrics
- DOI:10.1021/acsanm.3c03582
- 发表时间:2023-10
- 期刊:
- 影响因子:5.9
- 作者:Huiting Qin;Amirhossein Hajiaghajani;A. Escobar;Amir Hosein Afandizadeh Zargari;Abel Jimenez;Fadi J. Kurdahi;Peter Tseng
- 通讯作者:Huiting Qin;Amirhossein Hajiaghajani;A. Escobar;Amir Hosein Afandizadeh Zargari;Abel Jimenez;Fadi J. Kurdahi;Peter Tseng
Programmable Multiwavelength Radio Frequency Spectrometry of Chemophysical Environments through an Adaptable Network of Flexible and Environmentally Responsive, Passive Wireless Elements
- DOI:10.1002/smsc.202200013
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Manik Dautta;Amirhossein Hajiaghajani;Fan Ye;A. Escobar;Abel Jimenez;Kazi Khurshidi Haque Dia;Peter Tseng
- 通讯作者:Manik Dautta;Amirhossein Hajiaghajani;Fan Ye;A. Escobar;Abel Jimenez;Kazi Khurshidi Haque Dia;Peter Tseng
Broadside‐Coupled Split Ring Resonators as a Model Construct for Passive Wireless Sensing
Broadside — 耦合开口环谐振器作为无源无线传感的模型结构
- DOI:10.1002/adsr.202300006
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Dia, Kazi Khurshidi Haque;Hajiaghajani, Amirhossein;Escobar, Alberto Ranier;Dautta, Manik;Tseng, Peter
- 通讯作者:Tseng, Peter
Textile-integrated metamaterials for near-field multibody area networks
- DOI:10.1038/s41928-021-00663-0
- 发表时间:2021-11-11
- 期刊:
- 影响因子:34.3
- 作者:Hajiaghajani, Amirhossein;Zargari, Amir Hosein Afandizadeh;Tseng, Peter
- 通讯作者:Tseng, Peter
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Tseng其他文献
Mechanically-directed assembly of nanostructured biopolymer with tunable anisotropy, hierarchy, and functionality
- DOI:
10.1016/j.nxmate.2024.100140 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:
- 作者:
Lei Li;Alberto R. Escobar;Somayeh Zanganeh;Manik Dautta;M.M.H. Sajeeb;Fan Ye;Jens T. Escobar;Peter Tseng - 通讯作者:
Peter Tseng
Body-conformal Metamaterials for Nearfield Power transmission to Body-IoT Sensor Networks
用于向身体物联网传感器网络进行近场电力传输的身体共形超材料
- DOI:
10.1109/wpw54272.2022.9853924 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Amirhossein Hajiaghajani;Peter Tseng - 通讯作者:
Peter Tseng
GaN growth on patterned silicon substrates. A thermo mechanical study on wafer bow reduction
图案化硅衬底上的 GaN 生长。
- DOI:
10.1109/esime.2012.6191708 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Mario Gonzalez;K. Cheng;Peter Tseng;G. Borghs - 通讯作者:
G. Borghs
HEAR: Fog-Enabled Energy-Aware Online Human Eating Activity Recognition
HEAR:基于雾的能量感知在线人类饮食活动识别
- DOI:
10.1109/jiot.2020.3008842 - 发表时间:
2021 - 期刊:
- 影响因子:10.6
- 作者:
Nafiul Rashid;Manik Dautta;Peter Tseng;M. A. Al Faruque - 通讯作者:
M. A. Al Faruque
Peter Tseng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Tseng', 18)}}的其他基金
Probing physical limits in TRPV1-magnetogenetics with micro-magnetic devices
用微磁装置探测 TRPV1 磁遗传学的物理极限
- 批准号:
1928326 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
基于Multi-Pass Cell的高功率皮秒激光脉冲非线性压缩关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Multi-decadeurbansubsidencemonitoringwithmulti-temporaryPStechnique
- 批准号:
- 批准年份:2022
- 资助金额:80 万元
- 项目类别:
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
- 批准号:52111530069
- 批准年份:2021
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
基于8色荧光标记的Multi-InDel复合检测体系在降解混合检材鉴定的应用研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘-印支块体地壳流追踪中的应用
- 批准号:
- 批准年份:2021
- 资助金额:15 万元
- 项目类别:
大规模非确定图数据分析及其Multi-Accelerator并行系统架构研究
- 批准号:62002350
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
3D multi-parameters CEST联合DKI对椎间盘退变机制中微环境微结构改变的定量研究
- 批准号:82001782
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
高速Multi-bit/cycle SAR ADC性能优化理论研究
- 批准号:62004023
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于multi-SNP标记及不拆分策略的复杂混合样本身份溯源研究
- 批准号:
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘—印支块体地壳流追踪中的应用
- 批准号:
- 批准年份:2020
- 资助金额:万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
CAREER: Enabling the Accurate Simulation of Multi-Dimensional Core-Level Spectroscopies in Molecular Complexes using Time-Dependent Density Functional Theory
职业:使用瞬态密度泛函理论实现分子复合物中多维核心级光谱的精确模拟
- 批准号:
2337902 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Leveraging the Three-Dimensional Multi-Stability from Origami Folding to Synthesize Multi-Functional Material Systems
职业:利用折纸折叠的三维多稳定性来合成多功能材料系统
- 批准号:
2240211 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Interpretable machine learning deciphers single-cell multi-modal data for understanding cell-type functional genomics in complex brains
职业:可解释的机器学习破译单细胞多模式数据,以了解复杂大脑中的细胞类型功能基因组学
- 批准号:
2144475 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Programming Multi-functional Responses into Civil Structures via Topology Optimization
职业:通过拓扑优化将多功能响应编程到土木结构中
- 批准号:
2047692 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: 3D Magnetic Structuring and Hierarchical Integration of Multi-functional Polymer Nanocomposites
职业:多功能聚合物纳米复合材料的 3D 磁结构和分层集成
- 批准号:
1844670 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Leveraging the Three-Dimensional Multi-Stability from Origami Folding to Synthesize Multi-Functional Material Systems
职业:利用折纸折叠的三维多稳定性来合成多功能材料系统
- 批准号:
1751449 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: The Multi-functional Foot and its Role in Locomotor Control Across a Range of Complex Media
职业:多功能脚及其在各种复杂介质的运动控制中的作用
- 批准号:
1453106 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Multi-Functional Organic Electronics Through All-Conjugated Block Copolymers
职业:通过全共轭嵌段共聚物实现多功能有机电子器件
- 批准号:
1352099 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Nature's Mix and Match: Designing Omniphobic Surfaces with Multi-Functional Characteristics
职业:自然的混合与搭配:设计具有多功能特性的全能表面
- 批准号:
1351462 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Multi-Functional Particle Assemblies in Polymer Nanocomposites
职业:聚合物纳米复合材料中的多功能颗粒组件
- 批准号:
0955170 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant