Probing physical limits in TRPV1-magnetogenetics with micro-magnetic devices

用微磁装置探测 TRPV1 磁遗传学的物理极限

基本信息

  • 批准号:
    1928326
  • 负责人:
  • 金额:
    $ 38.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Ion channels are gates that control the flow of ions across the cell membrane. Activation (opening) of ion channels triggers cascades of critical signaling processes in cells and tissues. Most ion channels are activated in response to chemical or electrical stimuli, though some called mechanosensitive channels specifically respond to mechanical forces such as stretch or shear stress. "Magnetogenetics" is a method that uses magnetism to remotely and noninvasively control mechanosensitive channels to affect gene expression. This project will engineer a magnetic system to amplify and spatially target magnetogenetic responses. Magnetic nanobeads or iron-sequestering proteins will be attached to the mechanosensitive channels, and engineered magnetic fields will be applied to manipulate channel behavior. This new system of ion channel control will be used to study the response of mechanosensitive channels to a range of force. The research is expected to yield new understanding on the biophysics of mechanosensitive ion channels and inform new strategies on how to target or activate such channels remotely. The methods developed could potentially be applied to a variety of biological processes that depend on mechanical signals. The education program is focused on teaching broad skills among younger (and often underrepresented) students, encompassing design, fabrication, simulation, and biotechnology. The investigators seek to create long-term interest in STEM by introducing younger students to integrative projects that link from design and fabrication in engineering, to studying and analyzing the response of biological systems. A core goal of modern biomedical engineering remains the development of tools that can engage and control the underlying machinery of living systems. This project will develop integrated magnetic devices to spatially-control and amplify biomagnetic response in TRPV1-magnetogenetic cells. These tools will first be used to comprehensively characterize magnetogenetic Ca2+ signaling. This will be accomplished by: (1) Interfacing micro-magnetic amplifier devices to such cells (that would behave like massively-parallel, tunable magnetic traps), and (2) Varying the magnetic volume of nano-magnets tagged to TRPV1. The magnetic systems will create the highest static or time-varying magnetic field / magnetic-field gradients ever elicited in magnetogenetic systems, and will generate channel-tagged mechanical forces that exceed the theoretical force required to open TRPV1 channels. In addition, detailed studies on how static or time-varying magnetic field, field gradient, pull-rate, and nano-magnet volume interact over 2D space to polarize cellular Ca2+ signaling will help clarify (or refute) magnetogenetic behavior. The project will address emerging controversy on the viability of, and physical mechanisms behind magnetogenetics. Magnetic approaches to manipulate ion channels carry tremendous, as of yet unrealized potential to enable non-invasive tools to control biological behavior. The investigations of this project are a critically important step to both laying out the limits of magnetogenetic control and clarifying how such strategies may be practically utilized. Cells will be comprehensively probed at both the single cell and massively-parallel scales in-vitro, using modern techniques in calcium imaging, patch-clamping, and combined single-cell imaging/probing. It is anticipated that these systems will yield new insights on the physics of mechanosensitive channels under highly-localized stimuli and realize a new platform for in-vitro neuroengineering, as TRPV1 ion channels are abundant in the nervous system and play an important role in many functions, e.g., the regulation of pain. Such tools may additionally uncover new insights on the mechanotransductive nature of a wide variety of proteins due to their scalability in data collection, protein targeting, and mechanical force generation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
离子通道是控制离子穿过细胞膜流动的门。 离子通道的激活(开放)触发细胞和组织中关键信号传导过程的级联。大多数离子通道响应于化学或电刺激而被激活,尽管一些被称为机械敏感通道的通道特异性地响应于机械力,例如拉伸或剪切应力。“磁遗传学”是一种利用磁性远程和非侵入性地控制机械敏感通道以影响基因表达的方法。该项目将设计一个磁系统来放大和空间靶向磁致反应。磁性纳米珠或铁螯合蛋白将附着在机械敏感通道上,并应用工程磁场来操纵通道行为。这种新的离子通道控制系统将用于研究机械敏感通道对一系列力的响应。这项研究有望对机械敏感离子通道的生物物理学产生新的理解,并为如何远程靶向或激活此类通道提供新的策略。所开发的方法可以潜在地应用于依赖于机械信号的各种生物过程。该教育项目的重点是向年轻(而且往往代表性不足)的学生教授广泛的技能,包括设计、制造、模拟和生物技术。研究人员试图通过向年轻学生介绍从工程设计和制造到研究和分析生物系统反应的综合项目,来创造对STEM的长期兴趣。 现代生物医学工程的一个核心目标仍然是开发能够参与和控制生命系统底层机制的工具。该项目将开发集成磁性设备,以空间控制和放大TRPV 1-磁发生细胞中的生物磁响应。这些工具将首先用于全面表征磁致Ca 2+信号。这将通过以下方式实现:(1)将微磁放大器设备与这些细胞连接(表现得像平行的可调磁阱),以及(2)改变标记到TRPV 1的纳米磁体的磁体积。磁系统将产生磁发生系统中有史以来引起的最高静态或时变磁场/磁场梯度,并将产生超过打开TRPV 1通道所需的理论力的通道标记机械力。此外,关于静态或时变磁场、场梯度、拉速和纳米磁体体积如何在二维空间上相互作用以抑制细胞Ca 2+信号传导的详细研究将有助于澄清(或反驳)磁发生行为。该项目将解决磁遗传学的可行性和背后的物理机制的新出现的争议。 磁方法来操纵离子通道进行巨大的,尚未实现的潜力,使非侵入性工具来控制生物行为。这个项目的调查是一个至关重要的一步,既奠定了磁致控制的限制,并澄清如何这种策略可能实际使用。细胞将在体外以单细胞和平行的尺度进行全面探测,使用钙成像、膜片钳和组合的单细胞成像/探测中的现代技术。预计这些系统将对高度局部化刺激下的机械敏感通道的物理学产生新的见解,并实现体外神经工程的新平台,因为TRPV 1离子通道在神经系统中丰富并且在许多功能中发挥重要作用,例如,疼痛的调节 这些工具还可以发现各种蛋白质的机械转导性质的新见解,因为它们在数据收集,蛋白质靶向和机械力产生方面具有可扩展性。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Selective Manipulation and Trapping of Magnetically Barcoded Materials
  • DOI:
    10.1002/admi.201901312
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Amirhossein Hajiaghajani;A. Escobar;Manik Dautta;Peter Tseng
  • 通讯作者:
    Amirhossein Hajiaghajani;A. Escobar;Manik Dautta;Peter Tseng
Textile-integrated metamaterials for near-field multibody area networks
  • DOI:
    10.1038/s41928-021-00663-0
  • 发表时间:
    2021-11-11
  • 期刊:
  • 影响因子:
    34.3
  • 作者:
    Hajiaghajani, Amirhossein;Zargari, Amir Hosein Afandizadeh;Tseng, Peter
  • 通讯作者:
    Tseng, Peter
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Tseng其他文献

Mechanically-directed assembly of nanostructured biopolymer with tunable anisotropy, hierarchy, and functionality
  • DOI:
    10.1016/j.nxmate.2024.100140
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lei Li;Alberto R. Escobar;Somayeh Zanganeh;Manik Dautta;M.M.H. Sajeeb;Fan Ye;Jens T. Escobar;Peter Tseng
  • 通讯作者:
    Peter Tseng
Body-conformal Metamaterials for Nearfield Power transmission to Body-IoT Sensor Networks
用于向身体物联网传感器网络进行近场电力传输的身体共形超材料
  • DOI:
    10.1109/wpw54272.2022.9853924
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amirhossein Hajiaghajani;Peter Tseng
  • 通讯作者:
    Peter Tseng
GaN growth on patterned silicon substrates. A thermo mechanical study on wafer bow reduction
图案化硅衬底上的 GaN 生长。
HEAR: Fog-Enabled Energy-Aware Online Human Eating Activity Recognition
HEAR:基于雾的能量感知在线人类饮食活动识别
  • DOI:
    10.1109/jiot.2020.3008842
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Nafiul Rashid;Manik Dautta;Peter Tseng;M. A. Al Faruque
  • 通讯作者:
    M. A. Al Faruque

Peter Tseng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Tseng', 18)}}的其他基金

CAREER: Multi-functional interlayer-RF resonators as a platform for passive and wireless biosensing
职业:多功能层间射频谐振器作为无源和无线生物传感平台
  • 批准号:
    1942364
  • 财政年份:
    2020
  • 资助金额:
    $ 38.93万
  • 项目类别:
    Continuing Grant

相似国自然基金

黄病毒组装促进内质网-脂滴互作的调控机制研究
  • 批准号:
    92054104
  • 批准年份:
    2020
  • 资助金额:
    83.0 万元
  • 项目类别:
    重大研究计划
磷脂分子参与植物细胞器互作及自噬的调控机制
  • 批准号:
    91954206
  • 批准年份:
    2019
  • 资助金额:
    301.0 万元
  • 项目类别:
    重大研究计划
有性生殖过程纤毛与细胞外膜泡细胞器互作网络建立和调控的分子机理
  • 批准号:
    91954123
  • 批准年份:
    2019
  • 资助金额:
    76.0 万元
  • 项目类别:
    重大研究计划
棕色脂肪细胞脂滴线粒体互作的建立及维持机制研究
  • 批准号:
    91954108
  • 批准年份:
    2019
  • 资助金额:
    79.0 万元
  • 项目类别:
    重大研究计划
线粒体-溶酶体互作与iNKT细胞的抗肿瘤功能研究
  • 批准号:
    91954122
  • 批准年份:
    2019
  • 资助金额:
    81.0 万元
  • 项目类别:
    重大研究计划
解析线粒体参与细胞器互作的蛋白网络及分子机制
  • 批准号:
    91954120
  • 批准年份:
    2019
  • 资助金额:
    77.0 万元
  • 项目类别:
    重大研究计划
植物抗逆蛋白NRP介导的早期内体与自噬体互作的机制
  • 批准号:
    91954102
  • 批准年份:
    2019
  • 资助金额:
    82.0 万元
  • 项目类别:
    重大研究计划
内质网叶绿体互作及其在植物抗病毒过程中作用
  • 批准号:
    91954105
  • 批准年份:
    2019
  • 资助金额:
    71.0 万元
  • 项目类别:
    重大研究计划
面向智能电网基础设施Cyber-Physical安全的自治愈基础理论研究
  • 批准号:
    61300132
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
非管井集水建筑物取水机理的物理模拟及计算模型研究
  • 批准号:
    40972154
  • 批准年份:
    2009
  • 资助金额:
    41.0 万元
  • 项目类别:
    面上项目

相似海外基金

Effects of Physical Activity on Human Pregnancy Energetics: Testing Maternal Metabolic Limits
体力活动对人类妊娠能量的影响:测试母体代谢极限
  • 批准号:
    2316555
  • 财政年份:
    2023
  • 资助金额:
    $ 38.93万
  • 项目类别:
    Standard Grant
Exploring the Physical Limits of Structural Superlubricity
探索结构超润滑的物理极限
  • 批准号:
    2131976
  • 财政年份:
    2022
  • 资助金额:
    $ 38.93万
  • 项目类别:
    Standard Grant
Exploring the Limits of Ribosome Mediated Polymerizations for Expanding the Genetic Code
探索核糖体介导的聚合对扩展遗传密码的限制
  • 批准号:
    10350599
  • 财政年份:
    2021
  • 资助金额:
    $ 38.93万
  • 项目类别:
Establishing the Limits of Perceptual Inference for Visual Motion
建立视觉运动感知推理的极限
  • 批准号:
    10318920
  • 财政年份:
    2021
  • 资助金额:
    $ 38.93万
  • 项目类别:
CAREER: Fast, Furious and Fantastic Beasts: Integrative principles, biomechanics and physical limits of impulsive motion in ultrafast organisms
职业:《速度与激情》和《神奇动物在哪里》:超快生物体中脉冲运动的综合原理、生物力学和物理极限
  • 批准号:
    1941933
  • 财政年份:
    2020
  • 资助金额:
    $ 38.93万
  • 项目类别:
    Continuing Grant
Material-physical processes controlling fault-slip at the depth limits of the seismogenic zone
控制地震带深度极限处断层滑移的物质物理过程
  • 批准号:
    19K14823
  • 财政年份:
    2019
  • 资助金额:
    $ 38.93万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Understanding and managing the limits of physiological tolerance in heat vulnerable individuals during rest and physical activity
了解和管理热脆弱个体在休息和体力活动期间的生理耐受力极限
  • 批准号:
    380268
  • 财政年份:
    2018
  • 资助金额:
    $ 38.93万
  • 项目类别:
    Operating Grants
Physical limits for sensitivity of a monolithic Terahertz superconducting sensor based on a galvanically isolated nanobridge.
基于电流隔离纳米桥的单片太赫兹超导传感器灵敏度的物理限制。
  • 批准号:
    388956995
  • 财政年份:
    2018
  • 资助金额:
    $ 38.93万
  • 项目类别:
    Research Grants
CAREER: Fundamental Limits of Physical Adsorption in Porous Materials
职业:多孔材料物理吸附的基本限制
  • 批准号:
    1653375
  • 财政年份:
    2017
  • 资助金额:
    $ 38.93万
  • 项目类别:
    Standard Grant
STARSS: Small: SecureDust -- The Physical Limits of Information Security
STARSS:小:SecureDust——信息安全的物理极限
  • 批准号:
    1619558
  • 财政年份:
    2016
  • 资助金额:
    $ 38.93万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了