CAREER: Exploiting Topology in Graph Algorithm Design

职业:在图算法设计中利用拓扑

基本信息

  • 批准号:
    1942597
  • 负责人:
  • 金额:
    $ 58.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Graphs, also known as networks, are used to represent many kinds of relationships between pairs of entities. For example, a graph may describe pairs of networking devices directly connected together or pairs of roadway intersections connected by a stretch of road. Many useful tasks, such as understanding the reliability of a computer network or finding the fastest route between two locations, can be performed by doing computations on these graphs. When a graph has certain properties such as being drawable on a piece of paper without crossings between its connections, it becomes possible to do these types of computations much more quickly than if the properties were not present. Many of these faster computations rely on important results from topology, the mathematical study of what properties geometric objects maintain after certain types of deformations. This project seeks to better understand the role topology can take both in performing fast computations on graphs and explaining what graph properties are necessary for these fast computations. The project aims to make substantial topology based additions to the toolkit used in graph computations. These additions should make new computational tasks possible and greatly simplify established tasks. The project involves a substantial education component as well that includes educating students on the known connections between topology and computer science and providing undergraduate minority students their first opportunities to participate in the research process.The research activities have three components. The first involves generalizing known planar graph algorithms for many fundamental problems in computer science to graphs embeddable in low complexity surfaces. The second component explores how topological intuitions and tools created during the first component can be used to solve difficult problems back in the setting of planar graphs. The third component involves pushing these tools to their limits in the creation of algorithms for more general families of graphs than those embeddable in low complexity surfaces with a focus on the so-called H-minor-free graphs. The types of problems studied for all three components include the computations of optimal network flows, minimum cuts, and shortest paths. Student education will take place through the development of a new course in computational topology at the awardee institution that focusses on graph algorithms and topological data analysis. Activities for undergraduate minority students will consist primarily of the implementation and experimental analysis of algorithms designed during the primary research activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图,也称为网络,用于表示实体对之间的多种关系。例如,一个图可以描述直接连接在一起的网络设备对或由一段道路连接的道路交叉口对。许多有用的任务,如理解计算机网络的可靠性或找到两个地点之间最快的路线,都可以通过对这些图进行计算来执行。当图具有某些属性时,例如可以在一张纸上绘制,其连接之间没有交叉点,则可以比不存在这些属性时更快地进行这些类型的计算。许多这些更快的计算依赖于拓扑学的重要结果,拓扑学是对几何物体在某些类型的变形后保持的属性的数学研究。本项目旨在更好地理解拓扑在图上执行快速计算和解释这些快速计算所需的图属性时所扮演的角色。该项目旨在为图计算中使用的工具包添加大量基于拓扑的内容。这些附加功能应该使新的计算任务成为可能,并大大简化已建立的任务。该项目还包含大量的教育内容,包括教育学生了解拓扑学和计算机科学之间的已知联系,并为少数族裔本科生提供第一次参与研究过程的机会。研究活动有三个组成部分。第一个涉及将已知的用于计算机科学中许多基本问题的平面图算法推广到可嵌入在低复杂度曲面上的图。第二个部分探讨了在第一个部分中创建的拓扑直觉和工具如何用于解决平面图形设置中的难题。第三个部分涉及到将这些工具推向其极限,以创建更一般的图族,而不是那些可嵌入低复杂性曲面的算法,重点是所谓的无h次元图。这三个组成部分研究的问题类型包括最优网络流、最小切割和最短路径的计算。学生教育将通过在获奖机构开设一门新的计算拓扑课程来进行,该课程侧重于图算法和拓扑数据分析。少数民族本科生的活动将主要包括在主要研究活动中设计的算法的实现和实验分析。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Faster Algorithm for Maximum Flow in Directed Planar Graphs with Vertex Capacities
具有顶点容量的有向平面图中最大流的更快算法
Computation of Cycle Bases in Surface Embedded Graphs
表面嵌入图中循环基的计算
Clustering with Faulty Centers
具有故障中心的聚类
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kyle Fox其他文献

Counting and Sampling Minimum Cuts in Genus $$g$$ Graphs
  • DOI:
    10.1007/s00454-014-9623-4
  • 发表时间:
    2014-09-03
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Erin W. Chambers;Kyle Fox;Amir Nayyeri
  • 通讯作者:
    Amir Nayyeri
Comparison of 3 in vivo methods for assessment of alcohol-based hand rubs
  • DOI:
    10.1016/j.ajic.2015.01.025
  • 发表时间:
    2015-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sarah Edmonds-Wilson;Esther Campbell;Kyle Fox;David Macinga
  • 通讯作者:
    David Macinga

Kyle Fox的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kyle Fox', 18)}}的其他基金

Collaborative Research: AF: Small: Shape Matching in a Messy World Using Frechet Distance
合作研究:AF:小:使用 Frechet 距离在混乱的世界中进行形状匹配
  • 批准号:
    2311179
  • 财政年份:
    2023
  • 资助金额:
    $ 58.67万
  • 项目类别:
    Standard Grant

相似海外基金

Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    $ 58.67万
  • 项目类别:
    Studentship
Exploiting DNS in 3D Design
在 3D 设计中利用 DNS
  • 批准号:
    2777188
  • 财政年份:
    2026
  • 资助金额:
    $ 58.67万
  • 项目类别:
    Studentship
PriorCircuit:Circuit mechanisms for computing and exploiting statistical structures in sensory decision making
PriorCircuit:在感官决策中计算和利用统计结构的电路机制
  • 批准号:
    EP/Z000599/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.67万
  • 项目类别:
    Research Grant
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
  • 批准号:
    EP/Z000688/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.67万
  • 项目类别:
    Research Grant
Exploiting JWST to Unveil Our Icy Universe
利用 JWST 揭示我们的冰冷宇宙
  • 批准号:
    2906887
  • 财政年份:
    2024
  • 资助金额:
    $ 58.67万
  • 项目类别:
    Studentship
Exploiting protein import to interrogate energy transduction through the bacterial cell envelope
利用蛋白质输入来询问通过细菌细胞包膜的能量转导
  • 批准号:
    BB/X016366/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.67万
  • 项目类别:
    Research Grant
Exploiting Controlled Environments for the Development of Optimised Cannabis Sativa Phenotypes for Pharmaceutical Applications - CE-CannPharm
利用受控环境开发用于制药应用的优化大麻表型 - CE-CannPharm
  • 批准号:
    BB/Z514470/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.67万
  • 项目类别:
    Research Grant
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
  • 批准号:
    2340631
  • 财政年份:
    2024
  • 资助金额:
    $ 58.67万
  • 项目类别:
    Continuing Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
  • 批准号:
    2339112
  • 财政年份:
    2024
  • 资助金额:
    $ 58.67万
  • 项目类别:
    Continuing Grant
ActBio: Exploiting the Parallels between Active Matter and Mechanobiology
ActBio:利用活性物质与机械生物学之间的相似之处
  • 批准号:
    EP/Y033981/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.67万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了