CAREER: Next-Generation Infrastructure for Tensor Computations
职业:用于张量计算的下一代基础设施
基本信息
- 批准号:1942995
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Matrices and their higher-order generalization (tensors) provide a mathematical toolbox for expressing a large variety of algorithms. Consequently, linear algebra operations on dense matrices have served as the backbone of high-performance scientific computing applications. This research aims to translate this benefit to more complex problems, by improving software infrastructure and parallel performance of sparse matrix and tensor operations. The proposed methods will be applied to accelerate analysis of large graphs, approximation of multidimensional datasets by tensor decompositions, and simulation of quantum systems. By providing a high-level library for distributed sparse tensors, the research will improve the development productivity of scientists and engineers from disciplines including chemistry, physics, and bioinformatics. Deployment of tensor-based techniques on massively-parallel computing systems will enable simulations of larger scale and higher accuracy, making new innovations in computational science possible. Additionally, development of web-based educational modules for programming with tensors and understanding parallel performance will make the software and methods accessible to the broader scientific community.Tensor decompositions and tensor networks are fundamental techniques in approximation of multi-dimensional data and functions. The frontiers of tensor computations in quantum chemistry and data analysis involve methods that contract tensors of different order, size, and sparsity. Recent developments have led to provably efficient algorithms and software for contraction of a pair of dense tensors and multiplication of a pair of sparse matrices. However, in the context of sparse multi-tensor operations, opportunities for asymptotic cost improvements remain. In particular, there is a lack of software and rigorous algorithmic analysis for sparse matrix and tensor computations involving hyper-sparsity and output sparsity, as well as for all-at-once contraction of multiple tensors, which can be advantageous in the presence of sparsity. Further, at the software library level, open problems remain in leveraging layout persistence, reuse of mapping logic, and automated performance modeling. The project will address these gaps in the state-of-the-art of available computational infrastructure by developing new parallel algorithms and systems techniques for sparse multi-tensor contraction. These innovations will be integrated into the Cyclops library and studied in the context of applications in graph analysis, tensor decomposition, and tensor networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
矩阵和它们的高阶推广(张量)提供了一个数学工具箱来表达各种各样的算法。因此,稠密矩阵上的线性代数运算已经成为高性能科学计算应用的支柱。本研究旨在通过改善软件基础设施和稀疏矩阵和张量运算的并行性能,将这种优势转化为更复杂的问题。所提出的方法将被应用于加速大型图的分析,张量分解的多维数据集的近似,以及量子系统的模拟。通过提供分布式稀疏张量的高级库,该研究将提高化学、物理和生物信息学等学科的科学家和工程师的开发生产力。在并行计算系统上部署基于张量的技术将使更大规模和更高精度的模拟成为可能,使计算科学的新创新成为可能。此外,开发基于网络的教育模块,用于使用张量编程和理解并行性能,将使更广泛的科学界能够使用该软件和方法。张量分解和张量网络是多维数据和函数近似的基本技术。量子化学和数据分析中张量计算的前沿涉及收缩不同阶、大小和稀疏度的张量的方法。最近的发展导致了可证明有效的算法和软件的一对密集张量的收缩和一对稀疏矩阵的乘法。然而,在稀疏多张量操作的背景下,渐近成本改进的机会仍然存在。特别是,缺乏软件和严格的算法分析,用于稀疏矩阵和张量计算,涉及超稀疏性和输出稀疏性,以及用于多个张量的一次性收缩,这在稀疏性存在的情况下可能是有利的。此外,在软件库级别,在利用布局持久性、映射逻辑的重用和自动化性能建模方面仍然存在开放问题。该项目将通过开发用于稀疏多张量收缩的新的并行算法和系统技术来解决现有计算基础设施的最新技术中的这些差距。这些创新将被集成到Cyclops库中,并在图分析、张量分解和张量网络的应用背景下进行研究。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fast and Accurate Randomized Algorithms for Low-rank Tensor Decompositions
- DOI:
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:Linjian Ma;Edgar Solomonik
- 通讯作者:Linjian Ma;Edgar Solomonik
Distributed-memory tensor completion for generalized loss functions in python using new sparse tensor kernels
- DOI:10.1016/j.jpdc.2022.07.005
- 发表时间:2019-10
- 期刊:
- 影响因子:0
- 作者:Navjot Singh;Zecheng Zhang;Xiaoxia Wu;Naijing Zhang;Siyuan Zhang;Edgar Solomonik
- 通讯作者:Navjot Singh;Zecheng Zhang;Xiaoxia Wu;Naijing Zhang;Siyuan Zhang;Edgar Solomonik
Parallel Minimum Spanning Forest Computation using Sparse Matrix Kernels
- DOI:10.1137/1.9781611977141.7
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Tim Baer;Raghavendra Kanakagiri;Edgar Solomonik
- 通讯作者:Tim Baer;Raghavendra Kanakagiri;Edgar Solomonik
Cost-efficient Gaussian Tensor Network Embeddings for Tensor-structured Inputs
用于张量结构输入的经济高效的高斯张量网络嵌入
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ma, Linjian;Solomonik, Edgar
- 通讯作者:Solomonik, Edgar
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edgar Solomonik其他文献
Accelerating the Galerkin Reduced-Order Model with the Tensor Decomposition for Turbulent Flows
用湍流张量分解加速伽辽金降阶模型
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ping;Paul Fischer;Edgar Solomonik - 通讯作者:
Edgar Solomonik
Communication-Avoiding Parallel Algorithms for Solving Triangular Systems of Linear Equations
求解线性方程组三角系统的避免通信并行算法
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Tobias Wicky;Edgar Solomonik;T. Hoefler - 通讯作者:
T. Hoefler
Highly scalable parallel sorting
高度可扩展的并行排序
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Edgar Solomonik;L. Kalé - 通讯作者:
L. Kalé
Histogram Sort with Sampling
带采样的直方图排序
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Vipul Harsh;L. Kalé;Edgar Solomonik - 通讯作者:
Edgar Solomonik
Improving communication performance in dense linear algebra via topology aware collectives
通过拓扑感知集体提高密集线性代数的通信性能
- DOI:
10.1145/2063384.2063487 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Edgar Solomonik;A. Bhatele;J. Demmel - 通讯作者:
J. Demmel
Edgar Solomonik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edgar Solomonik', 18)}}的其他基金
Conference: Workshop on Sparse Tensor Computations
会议:稀疏张量计算研讨会
- 批准号:
2335998 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: Scalable Modular Software and Methods for High-Accuracy Materials and Condensed Phase Chemistry Simulation
合作研究:框架:用于高精度材料和凝聚相化学模拟的可扩展模块化软件和方法
- 批准号:
1931258 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
Next Generation Majorana Nanowire Hybrids
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
相似海外基金
CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
- 批准号:
2339723 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Securing Next-Generation Transportation Infrastructure: A Traffic Engineering Perspective
职业:保护下一代交通基础设施:交通工程视角
- 批准号:
2339753 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
- 批准号:
2422478 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: LoRa Enabled Space-air-ground Integrated Networks for Next-Generation Agricultural IoT
职业生涯:LoRa 支持下一代农业物联网的天地一体化网络
- 批准号:
2338976 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
- 批准号:
2339201 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Next Generation Online Resource Allocation
职业:下一代在线资源分配
- 批准号:
2340306 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Next-Generation Flow Cytometry - A New Approach to Cell Heterogeneity
职业:下一代流式细胞术 - 细胞异质性的新方法
- 批准号:
2422750 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Non-Local Metamaterials and Metasurfaces for Next Generation Non-Reciprocal Acoustic Devices
职业:下一代非互易声学器件的非局域超材料和超表面
- 批准号:
2340782 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Next Generation of High-Level Synthesis for Agile Architectural Design (ArchHLS)
职业:下一代敏捷架构设计高级综合 (ArchHLS)
- 批准号:
2338365 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Engineering next-generation adrenal gland organoids
职业:设计下一代肾上腺类器官
- 批准号:
2335133 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant