CAREER: Next Generation Universal Radio Platform with On-Demand Operation across UHF to Sub-Terahertz Bands

事业:下一代通用无线电平台,可在 UHF 至亚太赫兹频段内按需运行

基本信息

  • 批准号:
    1943040
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

The growth of emergent communication systems in both the industrial and commercial sectors has created a strong demand for extremely wideband radio systems capable of handling multi-Giga-bits-per-second (Gbps) data rates. More precisely, the desire for general-use ‘5G and beyond’ radios require architectures with continuous operation across the whole millimeter-wave (mm-wave) spectrum up to the sub-terahertz (sub-THz) bands. However, a major barrier against achieving that goal is the associated signal loss that results from the large path loss and atmospheric absorption at those frequencies. High gain multi-antenna radios are a potential solution, but they require massive hardware, making them unsuitable for 5G devices. To reduce hardware requirements, research has been focused on implementing fully digital transceivers to replace most of the analog hardware with software operations. This hardware-to-software convergence is still limited to low frequencies and remains relatively expensive. This CAREER presents novel techniques to implement a universal radio architecture for operation across legacy, 5G, and future 6G bands using a single multifunctional and adaptable platform. This research will lead to improvement in terrestrial, airborne, satellite, and vehicle-to-vehicle communications. Also, mm-wave and sub-THz systems will enable assistive technology via miniature medical, wearable, and implantable devices. Therefore, this research will have significant societal benefits impacting daily life for all. The research proposed in this project will be integrated with the principal investigator’s educational plans to develop new courses for both undergraduate and graduate students with focus on 5G and mm-wave transceivers. Efforts will also be taken to broaden the participation of underrepresented groups in STEM via curriculum development, undergraduate research programs, and outreach efforts. A new STEM outreach program on hands-on activities on radio communications will be established that involves the children of formerly homeless population, predominantly Hispanics and African Americans, individuals with disabilities, substance use, and mental health disorders. The goal of this project is to study, design, and develop wideband multifunctional adaptable transceivers for operation across the 5G, mm-wave, and sub-THz spectrum. To date, transceivers that can handle extremely wide operational bandwidths are not available. Indeed, current radios suffer from several bottlenecks: 1) antennas suffer from size-bandwidth-gain tradeoffs and are very lossy at high frequencies (i.e. mm-wave and sub-THz), 2) wideband radio frequency (RF) components are costly, lossy, and nonlinear, 3) high speed digitizers are power hungry and cost prohibitive, and 4) baseband digital electronics and software defined radios (SDR) are limited to narrowband and low frequency operations. This CAREER addresses these issues and brings forward innovative techniques to implement a universal radio with ‘on demand’ operation from a few hundred MHz to sub-THz frequencies using a single multifunctional and upgradable platform that combines 1) extremely wideband and reconfigurable aperture-in-aperture radiator, 2) high frequency modular and tunable RF front-ends that are inexpensive and power efficient operating from UHF (300MHz) up to sub-THz (300GHz) bands, and 4) physical layer interference suppression techniques. Importantly, the proposed radio is upgradable with evolving SDR technologies. That is, as SDR frequency coverage expands into emergent bands and becomes more affordable for commercial use, the RF hardware will be replaced with software operations. This hardware-to-software convergence will contribute in further reduction of the modular hardware whereby more RF modules will be integrated in the SDR. The long-term vision of this project is to implement an affordable and efficient fully digital system, with minimum hardware, operating from the low microwave frequencies up to the mm-wave bands. Overall, the proposed architecture will enable interference resiliency with increased spectral efficiency, spatial filtering, and concurrent beams across extremely large bandwidths.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新兴通信系统在工业和商业领域的增长已经产生了对能够处理每秒多千兆比特(Gbps)数据速率的极宽带无线电系统的强烈需求。更确切地说,对通用“5G及以后”无线电的需求需要在整个毫米波(mm波)频谱直至亚太赫兹(sub-THz)频段上连续运行的架构。然而,实现这一目标的主要障碍是由这些频率下的大路径损耗和大气吸收导致的相关信号损耗。高增益多天线无线电是一种潜在的解决方案,但它们需要大量的硬件,因此不适合5G设备。为了减少硬件需求,研究一直集中在实现全数字收发器,以取代大部分的模拟硬件与软件操作。这种硬件到软件的融合仍然限于低频,并且仍然相对昂贵。本CAREER介绍了使用单一多功能和自适应平台实现通用无线电架构的新技术,该架构可跨传统、5G和未来的6 G频段运行。这项研究将导致改进地面,空中,卫星和车辆对车辆的通信。此外,毫米波和亚太赫兹系统将通过微型医疗,可穿戴和植入式设备实现辅助技术。因此,这项研究将产生重大的社会效益,影响所有人的日常生活。该项目中提出的研究将与主要研究者的教育计划相结合,为本科生和研究生开发新课程,重点是5G和毫米波收发器。还将努力通过课程开发、本科生研究计划和外联工作,扩大代表性不足的群体在STEM中的参与。将建立一个新的关于无线电通信动手活动的STEM外联方案,涉及以前无家可归人口的儿童,主要是西班牙裔和非洲裔美国人,残疾人,物质使用者和精神健康障碍者。 该项目的目标是研究、设计和开发宽带多功能可适应收发器,用于在5G、毫米波和亚太赫兹频谱上运行。到目前为止,还没有能够处理极宽工作带宽的收发器。实际上,当前的无线电设备存在几个瓶颈:1)天线受到尺寸-带宽-增益权衡的影响,并且在高频下损耗很大(即,毫米波和亚太赫兹),2)宽带射频(RF)组件是昂贵的、有损耗的和非线性的,3)高速数字化仪是耗电的并且成本过高,以及4)基带数字电子和软件定义无线电(SDR)限于窄带和低频操作。这个职业生涯解决了这些问题,并提出了创新技术,以实现通用无线电与“按需”操作从几百MHz到亚太赫兹频率使用一个单一的多功能和可扩展的平台,结合1)极宽带和可重新配置的孔径中孔径辐射器,2)高频模块化和可调谐RF前端,其在UHF(300 MHz)至sub-THz(300 GHz)频带内廉价且功率高效地操作,以及4)物理层干扰抑制技术。重要的是,拟议的无线电可与不断发展的SDR技术兼容。也就是说,随着SDR频率覆盖范围扩展到新兴频段,并且对于商业用途变得更加实惠,RF硬件将被软件操作所取代。这种硬件到软件的融合将有助于进一步减少模块化硬件,从而将更多的RF模块集成在SDR中。该项目的长期愿景是实现一个负担得起的和高效的全数字系统,以最少的硬件,从低微波频率到毫米波段的操作。总体而言,拟议的架构将使干扰弹性与提高频谱效率,空间滤波,并在非常大的bandwidth.This奖项并发波束反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improving Isolation in Monostatic Simultaneous Transmit and Receive Systems Using a Quasi-Symmetrical Self-Interference Cancellation Architecture
  • DOI:
    10.1109/jmw.2022.3227242
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. N. Tarek;Marisol Roman Guerra;Anthony Nunez;Md Nazim Uddin;E. Alwan
  • 通讯作者:
    M. N. Tarek;Marisol Roman Guerra;Anthony Nunez;Md Nazim Uddin;E. Alwan
A Modified T Shaped Complex FIR-Circuit for Simultaneous Transmit and Receive System
一种改进的T形复合FIR电路用于同步发射和接收系统
  • DOI:
    10.1109/usnc-ursi52151.2023.10238277
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anwar Tarek, Md Nurul;Guerra, Marisol Roman;Uddin, Md Nazim;Alwan, Elias A.
  • 通讯作者:
    Alwan, Elias A.
Power Efficient RF Self-Interference Cancellation System for Simultaneous Transmit and Receive
用于同时发送和接收的高能效射频自干扰消除系统
Enhancing Gain Through Optimal Antenna Element Distribution in a Thinned Array Configuration
  • DOI:
    10.1109/ojap.2023.3331322
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Michael Ortiz;Md Nazim Uddin;Marisol Roman Guerra;Elias A. Alwan
  • 通讯作者:
    Michael Ortiz;Md Nazim Uddin;Marisol Roman Guerra;Elias A. Alwan
Low Profile Dual-Band Shared Aperture Array for Vehicle-to-Vehicle Communication
  • DOI:
    10.1109/access.2021.3124311
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Govindarajulu, Sandhiya Reddy;Hokayem, Rimon;Alwan, Elias A.
  • 通讯作者:
    Alwan, Elias A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elias Alwan其他文献

Elias Alwan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elias Alwan', 18)}}的其他基金

NSF Convergence Accelerator Track G: Autonomously Tunable Waveform-Agnostic Radio Adapter for Seamless and Secure Operation of DoD Devices Through Non-Cooperative 5G Networks
NSF 融合加速器轨道 G:自主可调波形无关无线电适配器,可通过非合作 5G 网络无缝、安全地操作国防部设备
  • 批准号:
    2226392
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: SMALL: Autonomously Reconfigurable Hardware-Reduced Wideband Transceivers for Efficient Passive-Active Spectrum Coexistence
合作研究:SWIFT:SMALL:自主可重构硬件精简宽带收发器,实现高效无源-有源频谱共存
  • 批准号:
    2030250
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Conference Grant: Student Travel Awards for 2019 International Workshop on Antenna Technology (iWAT) to be held in Miami, Florida, March 3-6, 2019
会议补助金:2019 年国际天线技术研讨会 (iWAT) 学生旅行奖将于 2019 年 3 月 3 日至 6 日在佛罗里达州迈阿密举行
  • 批准号:
    1915772
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
MRI: Acquisition of an 18GHz to 110GHz Millimeter-Wave Anechoic Chamber
MRI:获取 18GHz 至 110GHz 毫米波电波暗室
  • 批准号:
    1828458
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:

相似海外基金

CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
  • 批准号:
    2339723
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Securing Next-Generation Transportation Infrastructure: A Traffic Engineering Perspective
职业:保护下一代交通基础设施:交通工程视角
  • 批准号:
    2339753
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
  • 批准号:
    2422478
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: LoRa Enabled Space-air-ground Integrated Networks for Next-Generation Agricultural IoT
职业生涯:LoRa 支持下一代农业物联网的天地一体化网络
  • 批准号:
    2338976
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
  • 批准号:
    2339201
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Next Generation Online Resource Allocation
职业:下一代在线资源分配
  • 批准号:
    2340306
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Next-Generation Flow Cytometry - A New Approach to Cell Heterogeneity
职业:下一代流式细胞术 - 细胞异质性的新方法
  • 批准号:
    2422750
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Non-Local Metamaterials and Metasurfaces for Next Generation Non-Reciprocal Acoustic Devices
职业:下一代非互易声学器件的非局域超材料和超表面
  • 批准号:
    2340782
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Next Generation of High-Level Synthesis for Agile Architectural Design (ArchHLS)
职业:下一代敏捷架构设计高级综合 (ArchHLS)
  • 批准号:
    2338365
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Engineering next-generation adrenal gland organoids
职业:设计下一代肾上腺类器官
  • 批准号:
    2335133
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了