CAREER: Fundamental Transport Mechanisms of Evaporation From Non-Axisymmetric Droplets Confined on Hollow Micropillars Structures

职业:空心微柱结构中非轴对称液滴蒸发的基本传输机制

基本信息

  • 批准号:
    1943468
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-03-01 至 2023-04-30
  • 项目状态:
    已结题

项目摘要

Technology advances in micro- and power-electronics have revolutionized the way people work, communicate, and live. However, the miniaturization and high power densities require enhanced cooling technologies for reliable operation. Two-phase liquid cooling, such as direct evaporation from microscale droplets, utilizes the high latent heat of vaporization to effectively dissipate heat. Evaporation from non-spherical droplets, owing to their larger surface area and meniscus curvature, exhibits very different evaporation rates compared to a spherical droplet. Consequently, cooling rates can be enhanced by using micro-engineered surfaces to control droplet shapes. This project will establish a theoretical and experimental basis for breakthroughs in two-phase cooling technologies that can unleash the full potential of next-generation electronics used for data centers, electric vehicles, and artificial intelligence. The long-term educational goal of this CAREER project is to integrate project-based research outcomes into education modules and motivate STEM majors by engaging students from high school to the graduate level in surface engineering and thermal transport research. This project seeks to identify the different modes of heat and mass transfer during the evaporation of non-axisymmetric microdroplets. While sessile droplet evaporation has been studied extensively over the past hundred years, most of them have only focused on the evaporation of droplets with capped spherical shapes. Consequently, how different evaporation mechanisms are affected by the non-axisymmetric droplet shape and how the droplet geometry is controlled by micro-engineered structures remain unclear. This project seeks to elucidate how the geometry and dimensions of micro-engineered structures affect the contact line dynamics, thermocapillary flow, interfacial transport, and vapor diffusion characteristics for evaporating non-axisymmetric microdroplets. Novel experimental methods will be utilized based on a pressure-controlled microfluidic system, micro-particle image velocimetry, and planar laser induced fluorescence imaging to quantify evaporation mass transport and capture the local flow and temperature patterns. These approaches will advance experimental techniques in thermofluidic fields for probing the transport mechanisms of liquid-vapor two-phase systems, providing insights into liquid-vapor interfacial mass transport, micro-convection, and vapor diffusion during evaporation of non-axisymmetric microdroplets.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
微电子和电力电子技术的进步彻底改变了人们的工作、交流和生活方式。然而,小型化和高功率密度需要增强的冷却技术以实现可靠的操作。两相液体冷却,例如从微尺度液滴直接蒸发,利用蒸发的高潜热来有效地散热。非球形液滴的蒸发,由于其较大的表面积和弯月面曲率,表现出非常不同的蒸发速率相比,一个球形液滴。因此,可以通过使用微工程表面来控制液滴形状来提高冷却速率。该项目将为两相冷却技术的突破奠定理论和实验基础,从而释放出用于数据中心、电动汽车和人工智能的下一代电子产品的全部潜力。这个职业生涯项目的长期教育目标是将基于项目的研究成果整合到教育模块中,并通过让高中到研究生阶段的学生参与表面工程和热传输研究来激励STEM专业。该项目旨在确定非轴对称微滴蒸发过程中的不同传热传质模式。虽然近百年来人们对固着液滴蒸发进行了广泛的研究,但大多数研究都集中在有帽球形液滴的蒸发上。因此,不同的蒸发机制如何受到非轴对称液滴形状的影响,以及液滴几何形状如何受到微工程结构的控制仍然不清楚。该项目旨在阐明微工程结构的几何形状和尺寸如何影响蒸发非轴对称微滴的接触线动力学,热毛细流动,界面传输和蒸汽扩散特性。新的实验方法将利用基于压力控制的微流控系统,微粒子图像测速,和平面激光诱导荧光成像,以量化蒸发质量传输和捕捉当地的流量和温度模式。这些方法将推进热流体领域的实验技术,用于探测液-气两相系统的传输机制,提供对液-气界面质量传输,微对流,以及在非-该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Damena Agonafer其他文献

Design and modeling of hollow micropillars evaporator for thermal management in high heat flux applications: Numerical analysis
用于高热通量应用中热管理的空心微柱蒸发器的设计与建模:数值分析
  • DOI:
    10.1016/j.applthermaleng.2024.124977
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    Kidus Guye;Vivek Manepalli;Baris Dogruoz;Damena Agonafer
  • 通讯作者:
    Damena Agonafer

Damena Agonafer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Damena Agonafer', 18)}}的其他基金

CAREER: Fundamental Transport Mechanisms of Evaporation From Non-Axisymmetric Droplets Confined on Hollow Micropillars Structures
职业:空心微柱结构中非轴对称液滴蒸发的基本传输机制
  • 批准号:
    2322873
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Nanoscale Energy and Interfacial Transport Research Based Mentoring Program to increase Underrepresented Minority Students in STEM
基于纳米能量和界面传输研究的指导计划,以增加 STEM 领域代表性不足的少数族裔学生的数量
  • 批准号:
    1848668
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Broadening Participation through a Workshop on Nanoengineered Surfaces for Thermal Energy Transport
通过纳米工程表面热能传输研讨会扩大参与范围
  • 批准号:
    1749464
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Experimental Determination and Fundamental Theory of Mesoscopic Transport and Intrinsic Kinetics in CO2 Electrocatalysis
职业:二氧化碳电催化中介观输运和本征动力学的实验测定和基础理论
  • 批准号:
    2339693
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Fundamental Understanding of Thermal Transport at the Single Molecule Level
职业:对单分子水平热传输的基本了解
  • 批准号:
    2239004
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Fundamental Transport Mechanisms of Evaporation From Non-Axisymmetric Droplets Confined on Hollow Micropillars Structures
职业:空心微柱结构中非轴对称液滴蒸发的基本传输机制
  • 批准号:
    2322873
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Fundamental Investigation of the Wave Nature of Lattice Thermal Transport
职业:晶格热传输波性质的基础研究
  • 批准号:
    2047109
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Ultrafast Localized Plasmas in Dense Fluids: From Fundamental Phase-Change Phenomena and Diagnostics to Efficient Heat and Mass Transport
职业:稠密流体中的超快局域等离子体:从基本相变现象和诊断到高效的热和质量传输
  • 批准号:
    2048125
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Phonon Scattering By Electrons: From Fundamental Understanding To Thermal Transport Control
职业:电子声子散射:从基本理解到热传输控制
  • 批准号:
    1846927
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Fundamental Controls of Transport Attributes from Porous Media Microstructure
职业:多孔介质微观结构输运属性的基本控制
  • 批准号:
    1847689
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Safe, High-Performance Li-Ion Batteries Through a Fundamental Investigation of Thermal Transport in Electrochemical Materials and Interfaces
职业:通过电化学材料和界面热传输的基础研究来实现安全、高性能的锂离子电池
  • 批准号:
    1554183
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Understanding the Roles of Strain and Mass Disorder on Fundamental Thermal Transport Processes in Two-Dimensional Materials
职业:了解应变和质量无序对二维材料基本热传输过程的作用
  • 批准号:
    1553987
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Fundamental Limits of Charge Transport in Organic Semiconductors
职业:有机半导体中电荷传输的基本限制
  • 批准号:
    1254757
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了