CAREER: Flexible and efficient mixed models to infer the genetic architecture of complex phenotypes

职业:灵活高效的混合模型来推断复杂表型的遗传结构

基本信息

  • 批准号:
    1943497
  • 负责人:
  • 金额:
    $ 68.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Complex phenotypes, i.e., observable characteristics, are a central focus of biology and medicine. Growing collections of data that survey how genes and phenotypes vary across individuals present the tantalizing opportunity to systematically understand the genetic architecture of complex phenotypes. Drawing inferences about genetic architecture from these large collections of high-dimensional genomic data will elucidate the sets of rules that predict an organism’s phenotype. Methods based on mixed models, that model the joint effects of large numbers of genetic variants, have emerged as an important tool in this endeavor. Mixed model methods, however, rely on a number of simplifying modeling assumptions that can lead to biased inferences. Further, applying these methods to large-scale genetic datasets is computationally impractical. The project will develop novel, scalable methods that can characterize genetic architecture of complex traits. The application of these methods to large genetic datasets available will lead to novel insights into genes that underlie variation in complex phenotypes, which leads to further uncover rules of life. The inter-disciplinary aspect of the project will bring together researchers and students from computer science, statistics, bioinformatics and human genetics and will lead to cross-fertilization and closer interactions across these communities. The project will develop new computational mixed model methods that are flexible and efficient and to apply these methods to obtain novel insights into genetic architecture. Specifically, the project will develop 1) linear mixed models that provide accurate estimates of heritability across a wide range of genetic architectures, 2) non-linear mixed models that estimate the contribution of gene-gene and gene-environment interactions, and 3) multi-trait mixed models that estimate the genetic component shared across traits. Importantly, the proposed methods are designed to scale to datasets that contain millions of individuals. To demonstrate their utility, we will apply these methods to large genetic datasets to obtain novel insights into heritability, its distribution across the genome, its correlation with other traits, the contribution of gene-gene and gene-environment interactions, and the impact of natural selection.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
复杂的表型,即,可观察到的特征是生物学和医学的中心焦点。越来越多的调查基因和表型如何在个体之间变化的数据集合为系统地了解复杂表型的遗传结构提供了诱人的机会。从这些大量的高维基因组数据中推断遗传结构,将阐明预测生物体表型的规则集。基于混合模型的方法(对大量遗传变异的联合影响进行建模)已成为这一奋进的重要工具。然而,混合模型方法依赖于许多简化的建模假设,这可能导致有偏见的推断。此外,将这些方法应用于大规模遗传数据集在计算上是不切实际的。该项目将开发新的,可扩展的方法,可以表征复杂性状的遗传结构。将这些方法应用于现有的大型遗传数据集,将导致对复杂表型变异背后的基因的新见解,从而进一步揭示生命规则。该项目的跨学科方面将汇集来自计算机科学、统计学、生物信息学和人类遗传学的研究人员和学生,并将导致这些社区之间的相互促进和更密切的互动。该项目将开发新的计算混合模型方法,这些方法是灵活和有效的,并应用这些方法来获得新的见解遗传结构。具体来说,该项目将开发1)线性混合模型,提供广泛的遗传结构的遗传力的准确估计,2)非线性混合模型,估计基因-基因和基因-环境相互作用的贡献,以及3)多性状混合模型,估计性状之间共享的遗传成分。重要的是,所提出的方法旨在扩展到包含数百万个个体的数据集。为了证明它们的实用性,我们将把这些方法应用于大型遗传数据集,以获得对遗传力的新见解,它在基因组中的分布,它与其他性状的相关性,基因-基因和基因-环境相互作用的贡献,该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的评估被认为值得支持。影响审查标准。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient variance components analysis across millions of genomes
  • DOI:
    10.1038/s41467-020-17576-9
  • 发表时间:
    2020-08-11
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Pazokitoroudi, Ali;Wu, Yue;Sankararaman, Sriram
  • 通讯作者:
    Sankararaman, Sriram
An efficient linear mixed model framework for meta-analytic association studies across multiple contexts.
用于跨多个上下文的元分析关联研究的有效线性混合模型框架。
The lingering effects of Neanderthal introgression on human complex traits.
  • DOI:
    10.7554/elife.80757
  • 发表时间:
    2023-03-20
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Wei X;Robles CR;Pazokitoroudi A;Ganna A;Gusev A;Durvasula A;Gazal S;Loh PR;Reich D;Sankararaman S
  • 通讯作者:
    Sankararaman S
Quantifying the contribution of dominance deviation effects to complex trait variation in biobank-scale data.
  • DOI:
    10.1016/j.ajhg.2021.03.018
  • 发表时间:
    2021-05-06
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Pazokitoroudi A;Chiu AM;Burch KS;Pasaniuc B;Sankararaman S
  • 通讯作者:
    Sankararaman S
Cross-trait assortative mating is widespread and inflates genetic correlation estimates.
跨性向分类的交配是广泛的,并且膨胀了遗传相关估计。
  • DOI:
    10.1126/science.abo2059
  • 发表时间:
    2022-11-18
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Border, Richard;Athanasiadis, Georgios;Buil, Alfonso;Schork, Andrew J.;Cai, Na;Young, Alexander I.;Werge, Thomas;Flint, Jonathan;Kendler, Kenneth S.;Sankararaman, Sriram;Dahl, Andy W.;Zaitlen, Noah A.
  • 通讯作者:
    Zaitlen, Noah A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sriram Sankararaman其他文献

Characterizing the genetic architecture of drug response using gene-context interaction methods
利用基因-环境相互作用方法描绘药物反应的遗传结构
  • DOI:
    10.1016/j.xgen.2024.100722
  • 发表时间:
    2024-12-11
  • 期刊:
  • 影响因子:
    9.000
  • 作者:
    Michal Sadowski;Mike Thompson;Joel Mefford;Tanushree Haldar;Akinyemi Oni-Orisan;Richard Border;Ali Pazokitoroudi;Na Cai;Julien F. Ayroles;Sriram Sankararaman;Andy W. Dahl;Noah Zaitlen
  • 通讯作者:
    Noah Zaitlen
dotears: Scalable and consistent directed acyclic graph estimation using observational and interventional data
多泪:使用观测数据和干预数据进行可扩展且一致的有向无环图估计
  • DOI:
    10.1016/j.isci.2024.111673
  • 发表时间:
    2025-02-21
  • 期刊:
  • 影响因子:
    4.100
  • 作者:
    Albert Xue;Jingyou Rao;Sriram Sankararaman;Harold Pimentel
  • 通讯作者:
    Harold Pimentel
Identifying common disease trajectories of Alzheimer’s disease with electronic health records
利用电子健康记录识别阿尔茨海默病的常见疾病轨迹
  • DOI:
    10.1016/j.ebiom.2025.105831
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    10.800
  • 作者:
    Mingzhou Fu;Sriram Sankararaman;Bogdan Pasaniuc;Keith Vossel;Timothy S. Chang
  • 通讯作者:
    Timothy S. Chang
OP-CBIO201112 5640..5648
OP-CBIO201112 5640..5648
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Majumdar;Kathryn S. Burch;Tanushree Haldar;Sriram Sankararaman;Bogdan Pasaniuc;W. J. Gauderman;John S. Witte
  • 通讯作者:
    John S. Witte
Investigating the sources of variable impact of pathogenic variants in monogenic metabolic conditions
研究单基因代谢疾病中致病变异的可变影响的来源
  • DOI:
    10.1038/s41467-025-60339-7
  • 发表时间:
    2025-06-05
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Angela Wei;Richard Border;Boyang Fu;Sinéad Cullina;Nadav Brandes;Seon-Kyeong Jang;Sriram Sankararaman;Eimear E. Kenny;Miriam S. Udler;Vasilis Ntranos;Noah Zaitlen;Valerie A. Arboleda
  • 通讯作者:
    Valerie A. Arboleda

Sriram Sankararaman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sriram Sankararaman', 18)}}的其他基金

III: Medium: Scalable Machine Learning for Genome-Wide Association Analyses
III:媒介:用于全基因组关联分析的可扩展机器学习
  • 批准号:
    1705121
  • 财政年份:
    2017
  • 资助金额:
    $ 68.6万
  • 项目类别:
    Continuing Grant

相似国自然基金

相似海外基金

FlexNIR-PD: A resource efficient UK-based production process for patented flexible Near Infrared Sensors for LIDAR, Facial recognition and high-speed data retrieval
FlexNIR-PD:基于英国的资源高效生产工艺,用于 LIDAR、面部识别和高速数据检索的专利柔性近红外传感器
  • 批准号:
    10098113
  • 财政年份:
    2024
  • 资助金额:
    $ 68.6万
  • 项目类别:
    Collaborative R&D
Lite(House) - A Financially Flexible, Adaptive and Efficient Live/Work Housing Proposal
Lite(House) - 财务灵活、适应性强且高效的生活/工作住房提案
  • 批准号:
    10071140
  • 财政年份:
    2023
  • 资助金额:
    $ 68.6万
  • 项目类别:
    Collaborative R&D
FREEpHRI: Flexible, Robust and Efficient physical Human-robot Interaction with iterative learning and self-triggered role adaption
FREEpHRI:灵活、稳健、高效的物理人机交互,具有迭代学习和自我触发的角色适应能力
  • 批准号:
    EP/V057782/2
  • 财政年份:
    2023
  • 资助金额:
    $ 68.6万
  • 项目类别:
    Fellowship
Efficient and Flexible Point-to-Multipoint Content Distribution in 5G and Beyond
5G 及更高技术中高效、灵活的点对多点内容分发
  • 批准号:
    2816437
  • 财政年份:
    2023
  • 资助金额:
    $ 68.6万
  • 项目类别:
    Studentship
SCC-CIVIC-FA Track A: Novel Fuel-Flexible Combustion to Enable Ultra-Clean and Efficient Waste-to-Renewable Energy in Changing Climate
SCC-CIVIC-FA 轨道 A:新型燃料灵活燃烧,在不断变化的气候中实现超清洁、高效的废物转化为可再生能源
  • 批准号:
    2322319
  • 财政年份:
    2023
  • 资助金额:
    $ 68.6万
  • 项目类别:
    Standard Grant
SCC-CIVIC-PG Track A: Novel Fuel-Flexible Combustion to Enable Ultra-Clean and Efficient Waste-to-Renewable Energy in Changing Climate
SCC-CIVIC-PG 轨道 A:新型燃料灵活燃烧,在不断变化的气候中实现超清洁、高效的废物转化为可再生能源
  • 批准号:
    2228311
  • 财政年份:
    2022
  • 资助金额:
    $ 68.6万
  • 项目类别:
    Standard Grant
SBIR Phase II: A Flexible and Efficient Manufacturing System for Radio Antenna Reflectors
SBIR 第二阶段:灵活高效的无线电天线反射器制造系统
  • 批准号:
    2213128
  • 财政年份:
    2022
  • 资助金额:
    $ 68.6万
  • 项目类别:
    Cooperative Agreement
FREEpHRI: Flexible, Robust and Efficient physical Human-robot Interaction with iterative learning and self-triggered role adaption
FREEpHRI:灵活、稳健、高效的物理人机交互,具有迭代学习和自我触发的角色适应能力
  • 批准号:
    EP/V057782/1
  • 财政年份:
    2022
  • 资助金额:
    $ 68.6万
  • 项目类别:
    Fellowship
Development of efficient and flexible purification technologies for manufacturing and analyzing biopharmaceuticals
开发用于制造和分析生物制药的高效灵活的纯化技术
  • 批准号:
    RGPIN-2018-05464
  • 财政年份:
    2022
  • 资助金额:
    $ 68.6万
  • 项目类别:
    Discovery Grants Program - Individual
Highly efficient power amplifier arrays and transmitters for flexible 37-48 GHz 5G communication systems
适用于灵活的 37-48 GHz 5G 通信系统的高效功率放大器阵列和发射器
  • 批准号:
    565702-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 68.6万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了