CAREER: Machine Learning Enabled Study of Thermal Transport in Polycrystalline Materials from First Principles
职业:机器学习支持从第一原理研究多晶材料中的热传输
基本信息
- 批准号:1943807
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The development of new materials with ultrahigh, ultralow, or anisotropic thermal conductivity can potentially enable novel energy storage and conversion devices, and effective thermal management of electronics. Grain boundaries, which commonly exist in solid materials, significantly affect thermal transport, and thus engineering grain boundaries is crucial in developing novel materials of desired thermal properties. Due to challenges in obtaining experimental data and limitations in simulation studies that rely on employing empirical potentials, thermal transport across grain boundaries is not well understood. The proposed research will develop a new multiscale simulation framework that combines machine learning techniques and first-principles calculations. The new framework has a high accuracy comparable to direct first-principles calculations and is computationally feasible, enabling the discovery of the underlying physics of thermal transport processes across grain boundaries. Several educational activities are also proposed to increase public awareness, particularly about how machine learning techniques transform the basic science and engineering research. The goal of this CAREER project is to establish a quantitative understanding of thermal transport across various types of grain boundaries with the high predictive power of first principles. The new multiscale simulation framework has the potential to keep the computational cost several orders-of-magnitude cheaper than the direct first-principles calculation. This is made possible by integrating (i) machine learning of interatomic potentials for local atomic potential landscape at ~ 1 nm scale, (ii) atomistic Green's function method for phonon scattering by grain boundaries at 10 to 100 nm scale, and (ii) the Peierls-Boltzmann transport theory for overall phonon transport at sub-mm scale. Using this new simulation framework, this project will seek to obtain a conclusive understanding of phonon transport in several practically relevant 2D and 3D semiconductor polycrystals.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
开发具有低导热性、超低导热性或各向异性导热性的新材料可能会实现新型能量存储和转换设备,以及电子产品的有效热管理。晶界,通常存在于固体材料中,显着影响热传输,因此工程晶界是至关重要的,在开发所需的热性能的新材料。由于获得实验数据的挑战和依赖于采用经验势的模拟研究的局限性,跨晶界的热输运还没有得到很好的理解。拟议的研究将开发一个新的多尺度仿真框架,结合机器学习技术和第一性原理计算。新框架具有与直接第一性原理计算相当的高精度,并且在计算上是可行的,从而能够发现跨晶界的热传输过程的基本物理。还提出了一些教育活动,以提高公众的认识,特别是关于机器学习技术如何改变基础科学和工程研究。这个CAREER项目的目标是建立一个定量的理解,通过各种类型的晶界与第一原理的高预测能力的热输运。新的多尺度模拟框架有可能保持计算成本几个数量级的便宜比直接的第一性原理计算。这是通过集成(i)机器学习的局部原子势景观原子间势在~ 1纳米尺度,(ii)原子绿色的函数方法的声子散射晶界在10至100纳米尺度,和(ii)的Peierls-Boltzmann输运理论的整体声子输运在亚毫米尺度。利用这个新的模拟框架,该项目将寻求获得声子输运在几个实际相关的2D和3D半导体多晶体的结论性理解。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thermal resistance from non-equilibrium phonons at Si–Ge interface
Si–Ge 界面非平衡声子的热阻
- DOI:10.1016/j.mtphys.2023.101063
- 发表时间:2023
- 期刊:
- 影响因子:11.5
- 作者:Li, Xun;Han, Jinchen;Lee, Sangyeop
- 通讯作者:Lee, Sangyeop
Ab initio phonon transport across grain boundaries in graphene using machine learning based on small dataset
- DOI:10.1103/physrevmaterials.6.044004
- 发表时间:2019-08
- 期刊:
- 影响因子:3.4
- 作者:A. Hashemi;Ruiqiang Guo;K. Esfarjani;Sangyeop Lee
- 通讯作者:A. Hashemi;Ruiqiang Guo;K. Esfarjani;Sangyeop Lee
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sangyeop Lee其他文献
Experimental realization of hyperlens for sound waves based on a topology-optimized hyperbolic acoustic metamaterial
基于拓扑优化双曲声学超材料的声波超透镜的实验实现
- DOI:
10.1016/j.apacoust.2024.110516 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:3.600
- 作者:
Sang Uk Park;Sangyeop Lee;Kyungjun Song;Jaeyub Hyun - 通讯作者:
Jaeyub Hyun
Planar Hall effect in a single GaMnAs film grown on Si substrate
Si 衬底上生长的单一 GaMnAs 薄膜的平面霍尔效应
- DOI:
10.1016/j.jcrysgro.2012.12.062 - 发表时间:
2013 - 期刊:
- 影响因子:1.8
- 作者:
J. Won;Jinsik Shin;Sangyeop Lee;Hakjoon Lee;T. Yoo;Sang Hoon Lee;X. Liu;J. Furdyna - 通讯作者:
J. Furdyna
Spin relaxation of excitons in nonmagnetic quantum dots : Effect of spin coupling to magnetic semiconductor quantum dots
非磁性量子点中激子的自旋弛豫:自旋耦合对磁性半导体量子点的影响
- DOI:
10.1063/1.2163847 - 发表时间:
2006 - 期刊:
- 影响因子:3.2
- 作者:
Sangyeop Lee;M. Dobrowolska;J. Furdyna - 通讯作者:
J. Furdyna
Highly Sensitive Biological Analysis Using Optical Microfluidic Sensor
使用光学微流体传感器进行高灵敏度生物分析
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Sangyeop Lee;Lingxin Chen;J. Choo;Eun Kyu Lee;Sang Hoon Lee - 通讯作者:
Sang Hoon Lee
Fractionally Injection-Locked Frequency Multiplication Technique with Multi-Phase Ring VCO
多相环VCO的分数阶注入锁定倍频技术
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Sho Ikeda;Sangyeop Lee;Tatsuya Kamimura;Hiroyuki Ito;Noboru Ishihara;and Kazuya Masu - 通讯作者:
and Kazuya Masu
Sangyeop Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sangyeop Lee', 18)}}的其他基金
Collaborative Research: Hydrodynamic Thermal Transport in Graphitic Materials
合作研究:石墨材料中的流体动力热传输
- 批准号:
1705756 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
- 批准号:
2339216 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Integrated and end-to-end machine learning pipeline for edge-enabled IoT systems: a resource-aware and QoS-aware perspective
职业:边缘物联网系统的集成端到端机器学习管道:资源感知和 QoS 感知的视角
- 批准号:
2340075 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Gaussian Processes for Scientific Machine Learning: Theoretical Analysis and Computational Algorithms
职业:科学机器学习的高斯过程:理论分析和计算算法
- 批准号:
2337678 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Heterogeneous Neuromorphic and Edge Computing Systems for Realtime Machine Learning Technologies
职业:用于实时机器学习技术的异构神经形态和边缘计算系统
- 批准号:
2340249 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: From Fragile to Fortified: Harnessing Causal Reasoning for Trustworthy Machine Learning with Unreliable Data
职业:从脆弱到坚固:利用因果推理,利用不可靠的数据实现值得信赖的机器学习
- 批准号:
2337529 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Ethical Machine Learning in Health: Robustness in Data, Learning and Deployment
职业:健康领域的道德机器学习:数据、学习和部署的稳健性
- 批准号:
2339381 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
- 批准号:
2339686 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Intelligent Battery Management with Safe, Efficient, Fast-Adaption Reinforcement Learning and Physics-Inspired Machine Learning: From Cells to Packs
职业:具有安全、高效、快速适应的强化学习和物理启发机器学习的智能电池管理:从电池到电池组
- 批准号:
2340194 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: From Dirty Data to Fair Prediction: Data Preparation Framework for End-to-End Equitable Machine Learning
职业:从脏数据到公平预测:端到端公平机器学习的数据准备框架
- 批准号:
2341055 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant