CAREER: Theory-Guided Statistical Framework for Advancing Learning from Post-Windstorm Engineering Assessments
职业:理论指导的统计框架,促进风暴后工程评估的学习
基本信息
- 批准号:1944149
- 负责人:
- 金额:$ 57.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) grant will investigate new methodologies to advance learning from post-windstorm reconnaissance data. Windstorms, such as hurricanes and tornadoes, continue to cost billions in economic losses each year in the United States, much of which is due to the performance of buildings. In response, researchers collect increasingly vast datasets documenting the post-windstorm state of buildings. These data have the potential to drive advancements in both fundamental science and engineering practice that will strengthen the resilience of buildings and communities and can reduce future losses and other impacts. The robust capabilities for capturing windstorm performance data vastly outweigh current capabilities for learning from this data, which are typically incomplete, biased, and ill-suited for efficient discovery and application of knowledge. This project will develop a robust, theory-guided, statistical inference framework for learning from post-windstorm data that will transform the scale to understand and predict windstorm damage, specifically for low-rise buildings. These advancements will spur the development and implementation of more effective windstorm risk mitigation and more robust education strategies, and further inform more efficient and intelligent post-disaster reconnaissance methodologies. An interactive outreach platform will be developed to translate the research findings to the general public and increase public awareness of the critical factors affecting windstorm performance. A new graduate and undergraduate student organization will be developed to foster inter-disciplinary collaboration within the disaster research community that will produce a new generation of engineers, social scientists, and policy makers that have a more holistic understanding of disasters and disaster risk mitigation. Data from this project will be archived and made publicly available in the Natural Hazards Engineering Research Infrastructure (NHERI) Data Depot (https://www.DesignSafe-ci.org). This grant supports the National Science Foundation (NSF) role in the National Windstorm Impact Reduction Program (NWIRP). Windstorm performance of buildings is a function of a complex set of interacting factors that span meteorology, engineering, public policy, and socioeconomics that are not holistically understood. The specific goal of this research is to combine traditional data science with fundamental theory and expert knowledge to create a theory-guided, statistical inference framework that will enable efficient knowledge discovery from high-dimensional post-windstorm reconnaissance data. The project will utilize high quality post-windstorm datasets from recent windstorms collected by the NSF-supported Structural Extreme Events Reconnaissance network, enriched using additional data layers and human-machine techniques, to form robust testbeds for developing and piloting the new framework. The framework will build upon probabilistic graphical models, which allow established theory and expert knowledge to define known windstorm performance factors and their fundamental interrelationships, while focusing on causal inference as the goal rather than black box predictions. Ultimately, the research will enable a holistic understanding of the relative contributions of known windstorm performance factors, identify previously unknown or underestimated factors, and target new research areas supported by field observations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项学院早期职业发展(Career)补助金将调查新的方法,以促进从风暴后的侦察数据中学习。飓风和龙卷风等风暴每年在美国继续造成数十亿美元的经济损失,其中很大一部分是由于建筑物的性能造成的。作为回应,研究人员收集了越来越多的数据集,记录了风暴过后建筑物的状态。这些数据有可能推动基础科学和工程实践的进步,从而增强建筑物和社区的复原力,并可以减少未来的损失和其他影响。捕获风暴性能数据的强大能力远远超过了当前从这些数据中学习的能力,这些数据通常是不完整、有偏见的,不适合有效地发现和应用知识。该项目将开发一个强大的、理论指导的统计推断框架,以学习风暴后的数据,这将改变规模,以了解和预测风暴破坏,特别是对低层建筑。这些进展将促使制定和实施更有效的风暴风险缓解和更有力的教育战略,并进一步提供更有效和更智能的灾后侦察方法。我们会发展一个互动外展平台,把研究结果传达给公众,并提高公众对影响风暴表现的关键因素的认识。将建立一个新的研究生和本科生组织,以促进灾害研究社区内的跨学科合作,培养出对灾害和减轻灾害风险有更全面了解的新一代工程师、社会科学家和政策制定者。该项目的数据将被存档,并在自然灾害工程研究基础设施(NHERI)数据仓库(https://www.DesignSafe-ci.org).)中公开提供这笔赠款支持国家科学基金会(NSF)在国家减少风暴影响计划(NWIRP)中的作用。建筑物的风暴性能是一组复杂的相互作用因素的函数,这些因素横跨气象学、工程学、公共政策和社会经济学,而这些因素并不是整体上被理解的。这项研究的具体目标是将传统数据科学与基本理论和专家知识相结合,创建一个理论指导的统计推理框架,从而能够从高维风暴后侦察数据中高效地发现知识。该项目将利用NSF支持的结构极端事件侦察网络从最近的风暴中收集的高质量风暴后数据集,并使用额外的数据层和人机技术来丰富这些数据集,以形成强大的试验台,用于开发和试验新框架。该框架将建立在概率图形模型的基础上,这些模型允许既定的理论和专家知识定义已知的风暴性能因素及其基本相互关系,同时将重点放在作为目标的因果推理而不是黑箱预测上。最终,这项研究将能够全面了解已知风暴性能因素的相对贡献,识别以前未知或被低估的因素,并针对由现场观察支持的新研究领域。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Global Sensitivity Analysis Framework for Vertical Load Path Resistance in Wood-Frame Residential Structures
木框架住宅结构垂直荷载路径阻力的全局敏感性分析框架
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Rittelmeyer, Brandon M.;Roueche, David B.
- 通讯作者:Roueche, David B.
Using Bayesian Networks for Structured Learning from Post-Windstorm Building Performance
使用贝叶斯网络从暴风雨后的建筑性能中进行结构化学习
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Nakayama, Jordan O. Roueche
- 通讯作者:Nakayama, Jordan O. Roueche
Fragility-based sensitivity analysis framework for load paths subjected to wind hazards
基于脆弱性的风灾载荷路径敏感性分析框架
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Rittelmeyer, Brandon M. Roueche
- 通讯作者:Rittelmeyer, Brandon M. Roueche
Hybrid Framework for Post-Hazard Building Performance Assessments with Application to Hurricanes
应用于飓风的灾后建筑性能评估混合框架
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Roueche, D. B.;Nakayama, Jordan O.;Cetiner, Barbaros M.;Kameshwar, Sabarethinam;Kijewski-Correa, Tracy L.
- 通讯作者:Kijewski-Correa, Tracy L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Roueche其他文献
Structural performance of self-tapping screws for use in steel-CLT composite members
用于钢-CLT 复合构件的自攻螺钉的结构性能
- DOI:
10.1016/j.engstruct.2025.120652 - 发表时间:
2025-10-01 - 期刊:
- 影响因子:6.400
- 作者:
Hugh Merryday;Kadir Sener;David Roueche - 通讯作者:
David Roueche
David Roueche的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Roueche', 18)}}的其他基金
Reconstruction of Four-Dimensional Near-Surface Wind Characteristics from Debris and Damage Attributes using Computer Vision
利用计算机视觉从碎片和损伤属性重建四维近地表风特性
- 批准号:
2053935 - 财政年份:2021
- 资助金额:
$ 57.33万 - 项目类别:
Standard Grant
RAPID: Collection of Perishable Data on Wind- and Surge-Induced Residential Building Damage in Texas during 2017 Hurricane Harvey
RAPID:收集 2017 年飓风哈维期间德克萨斯州风和浪涌引起的住宅建筑损坏的易腐数据
- 批准号:
1759996 - 财政年份:2017
- 资助金额:
$ 57.33万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Theory-guided Design and Discovery of Rare-Earth Element 2D Transition Metal Carbides MXenes (RE-MXenes)
合作研究:稀土元素二维过渡金属碳化物MXenes(RE-MXenes)的理论指导设计和发现
- 批准号:
2124241 - 财政年份:2021
- 资助金额:
$ 57.33万 - 项目类别:
Continuing Grant
RAPID: Ecological memories and theory-guided recovery of post-fire steppe
RAPID:火灾后草原的生态记忆和理论指导恢复
- 批准号:
2118125 - 财政年份:2021
- 资助金额:
$ 57.33万 - 项目类别:
Standard Grant
Can suicide theory-guided natural language processing of clinical progress notes improve existing prediction models of Veteran suicide mortality?
自杀理论指导的临床进展笔记自然语言处理能否改善现有的退伍军人自杀死亡率预测模型?
- 批准号:
10187800 - 财政年份:2021
- 资助金额:
$ 57.33万 - 项目类别:
Statistical Learning and Control Theory Guided Approach Toward Designing and Operating Secure, Resilient, and Energy-Efficient Large-Scale Computing Systems
统计学习和控制理论指导设计和操作安全、弹性和节能的大规模计算系统的方法
- 批准号:
532473-2019 - 财政年份:2021
- 资助金额:
$ 57.33万 - 项目类别:
Postgraduate Scholarships - Doctoral
CAREER: Multi-dimensional synthetic approach toward alkali-transition metal intermetallics guided by theory and in-situ studies
职业:以理论和原位研究为指导的碱金属过渡金属间化合物的多维合成方法
- 批准号:
1944551 - 财政年份:2020
- 资助金额:
$ 57.33万 - 项目类别:
Continuing Grant
Statistical Learning and Control Theory Guided Approach Toward Designing and Operating Secure, Resilient, and Energy-Efficient Large-Scale Computing Systems
统计学习和控制理论指导设计和操作安全、弹性和节能的大规模计算系统的方法
- 批准号:
532473-2019 - 财政年份:2020
- 资助金额:
$ 57.33万 - 项目类别:
Postgraduate Scholarships - Doctoral
CAREER: Theory-Guided Design of Porous Organic Frameworks for Energy Conversion and Storage
职业:用于能量转换和存储的多孔有机框架的理论指导设计
- 批准号:
1848067 - 财政年份:2019
- 资助金额:
$ 57.33万 - 项目类别:
Continuing Grant
Sustainable and Durable Calcium Sulfoaluminate Binders Enabled by Multi-Physics Characterization and Theory-Guided Machine Learning
通过多物理表征和理论指导的机器学习实现可持续且耐用的硫铝酸钙粘合剂
- 批准号:
1932690 - 财政年份:2019
- 资助金额:
$ 57.33万 - 项目类别:
Standard Grant
Statistical Learning and Control Theory Guided Approach Toward Designing and Operating Secure, Resilient, and Energy-Efficient Large-Scale Computing Systems
统计学习和控制理论指导设计和操作安全、弹性和节能的大规模计算系统的方法
- 批准号:
532473-2019 - 财政年份:2019
- 资助金额:
$ 57.33万 - 项目类别:
Postgraduate Scholarships - Doctoral
CRCNS: Theory-guided studies of cortical mechanisms of multi-input integration
CRCNS:多输入整合皮质机制的理论指导研究
- 批准号:
9765321 - 财政年份:2018
- 资助金额:
$ 57.33万 - 项目类别:














{{item.name}}会员




