CAREER: Soft, biocompatible ion-based transistors for responsive neuroelectronic devices
职业:用于响应神经电子设备的柔软、生物相容性离子晶体管
基本信息
- 批准号:1944415
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Bioelectronic devices have numerous potential benefits to human health, from in-home wellness monitoring to diagnosis and treatment of neuropsychiatric diseases. However, safe and effective use of these devices is limited by the rigid, non-biocompatible electronic components that must be incorporated to allow execution of the required functions. This project seeks to study how soft and fully biocompatible materials can be leveraged to interact directly with signals from the body without damaging tissue. A transistor fabricated from these materials will be used to create the circuits necessary for bioelectronic devices to acquire and modulate the activity of neurons in the brain. The outcome of the research will benefit society by improving the design of bioelectronic devices currently used for patients with conditions such as epilepsy or Parkinson's disease by eliminating the need for implantation of bulky or rigid materials in the body. This project will also facilitate understanding of the principles underlying interactions between the body and electronic devices. The educational component of this project leverages ion-gated transistors as biocompatible and low-cost components to be used in student and educator projects that teach principles of bioelectronic device design. These projects will be maintained in a comprehensive database to facilitate dissemination to educators and outreach coordinators, providing evidence-based methods to improve project-based learning in bioelectronics more broadly. The educational objectives of the project are to provide students and educators with hands-on opportunities to design and test simple, biocompatible bioelectronic devices. These efforts will increase exposure to engineering methods in schools and stimulate interest in bioelectronics to benefit health.There is an enormous need to develop bioelectronic components that can merge biocompatibility, ion transduction, high speed, and reliable operation in physiological environments. The objective of the project is to develop ion-driven, conformable, implantable bioelectronic devices to enable efficient interaction with neural circuits. The central hypothesis is that ion-gated transistors will effectively interact with neural signals because they can directly transduce the brain's ionic flux, and are sufficient to create the integrated circuits required for fully implantable, soft, closed-loop devices that do not require rigid encapsulation. The research involves fabrication of integrated circuits comprised of ion-gated transistors with comprehensive in vitro and modeling-based characterization of the parameters governing their operation in physiologic environments. These devices are then used to modulate neural networks in an in vivo animal model of epilepsy and acquire neurophysiologic data from human subjects. The rationale underlying this research is that realization of such devices will transform design of bioelectronic devices with the potential to enhance diagnosis and therapy for neuropsychiatric disease.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生物电子设备对人类健康有许多潜在的好处,从家庭健康监测到神经精神疾病的诊断和治疗。然而,这些器械的安全有效使用受到刚性、非生物相容性电子组件的限制,这些电子组件必须被整合以允许执行所需功能。该项目旨在研究如何利用柔软且完全生物相容的材料直接与来自身体的信号相互作用而不损伤组织。由这些材料制成的晶体管将用于创建生物电子设备所需的电路,以获取和调节大脑中神经元的活动。该研究的结果将通过改善目前用于癫痫或帕金森病等患者的生物电子设备的设计,消除在体内植入笨重或刚性材料的需要,从而使社会受益。该项目还将促进对身体和电子设备之间相互作用的基本原理的理解。该项目的教育部分利用离子门控晶体管作为生物相容性和低成本组件,用于教授生物电子设备设计原理的学生和教育者项目。这些项目将保存在一个综合数据库中,以便于向教育工作者和外联协调员传播,提供循证方法,更广泛地改善生物电子学中基于项目的学习。该项目的教育目标是为学生和教育工作者提供动手设计和测试简单的生物相容性生物电子设备的机会。这些努力将增加学校对工程方法的接触,并激发人们对生物电子学的兴趣,以造福健康。人们迫切需要开发能够融合生物相容性、离子转导、高速和在生理环境中可靠运行的生物电子元件。该项目的目标是开发离子驱动的,适应性的,可植入的生物电子设备,以实现与神经回路的有效交互。核心假设是,离子门控晶体管将有效地与神经信号相互作用,因为它们可以直接抑制大脑的离子流,并且足以创建完全植入式的集成电路,柔软的闭环设备不需要刚性封装。该研究涉及由离子门控晶体管组成的集成电路的制造,该晶体管具有全面的体外和基于建模的表征,这些表征控制它们在生理环境中的操作。然后,这些设备被用于调节体内癫痫动物模型中的神经网络,并从人类受试者获取神经生理学数据。这项研究的基本原理是,实现这样的设备将改变设计的生物电子设备的潜力,以加强诊断和治疗的神经精神疾病。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mixed-conducting particulate composites for soft electronics
- DOI:10.1126/sciadv.aaz6767
- 发表时间:2020-04-01
- 期刊:
- 影响因子:13.6
- 作者:Jastrzebska-Perfect, Patricia;Spyropoulos, George D.;Khodagholy, Dion
- 通讯作者:Khodagholy, Dion
Enhancement-mode ion-based transistor as a comprehensive interface and real-time processing unit for in vivo electrophysiology
- DOI:10.1038/s41563-020-0638-3
- 发表时间:2020-03-16
- 期刊:
- 影响因子:41.2
- 作者:Cea, Claudia;Spyropoulos, George D.;Khodagholy, Dion
- 通讯作者:Khodagholy, Dion
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dion Khodagholy其他文献
Closed-loop electrical stimulation prevents focal epilepsy progression and long-term memory impairment
闭环电刺激可预防局灶性癫痫进展和长期记忆障碍
- DOI:
10.1038/s41593-025-01988-1 - 发表时间:
2025-06-23 - 期刊:
- 影响因子:20.000
- 作者:
Jose J. Ferrero;Ahnaf R. Hassan;Zelin Yu;Zifang Zhao;Liang Ma;Cynthia Wu;Shan Shao;Takeshi Kawano;Judah Engel;Werner Doyle;Orrin Devinsky;Dion Khodagholy;Jennifer N. Gelinas - 通讯作者:
Jennifer N. Gelinas
Spatial control of doping in conducting polymers enables complementary, conformable, implantable internal ion-gated organic electrochemical transistors
导电聚合物中掺杂的空间控制能够实现互补、适配、可植入的内部离子门控有机电化学晶体管
- DOI:
10.1038/s41467-024-55284-w - 发表时间:
2025-01-09 - 期刊:
- 影响因子:15.700
- 作者:
Duncan J. Wisniewski;Liang Ma;Onni J. Rauhala;Claudia Cea;Zifang Zhao;Alexander Ranschaert;Jennifer N. Gelinas;Dion Khodagholy - 通讯作者:
Dion Khodagholy
Dion Khodagholy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dion Khodagholy', 18)}}的其他基金
NCS-FO: Conformable, expandable neural interface devices to assay natural cognitive maturation of the developing brain
NCS-FO:顺应性、可扩展的神经接口设备,用于测定发育中大脑的自然认知成熟度
- 批准号:
2219891 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF EAGER: Ionic communication: high resolution, non-invasive data communication for bioelectronics
NSF EAGER:离子通信:用于生物电子学的高分辨率、非侵入性数据通信
- 批准号:
2027135 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
Biostimulatory nanofiber-hydrogel composite for soft tissue remodeling
用于软组织重塑的生物刺激纳米纤维-水凝胶复合材料
- 批准号:
10391846 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Development of remotely actuated deformable membranes for in situ mechanical testing of soft tissue
开发用于软组织原位机械测试的远程致动变形膜
- 批准号:
10452283 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Biostimulatory nanofiber-hydrogel composite for soft tissue remodeling
用于软组织重塑的生物刺激纳米纤维-水凝胶复合材料
- 批准号:
10551877 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Development of remotely actuated deformable membranes for in situ mechanical testing of soft tissue
开发用于软组织原位机械测试的远程致动变形膜
- 批准号:
10708754 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Novel biocompatible adhesive for the soft tisuue bonding in orthopedic surgery
用于骨科手术中软组织粘合的新型生物相容性粘合剂
- 批准号:
19K09607 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Biocompatible devices with soft wet electrodes
具有柔软湿电极的生物相容性设备
- 批准号:
18H04158 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Thermophoretic manipulation of biocompatible soft materials properties in microfluidic devices
微流体装置中生物相容性软材料特性的热泳操控
- 批准号:
EP/R004382/1 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Research Grant














{{item.name}}会员




