NSF EAGER: Ionic communication: high resolution, non-invasive data communication for bioelectronics

NSF EAGER:离子通信:用于生物电子学的高分辨率、非侵入性数据通信

基本信息

  • 批准号:
    2027135
  • 负责人:
  • 金额:
    $ 8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-15 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

The ability to send and receive information from inside the body is of key importance for scientific and medical applications. Nearly all implantable electronics devices require communication with the external world to be able to transmit acquired bio-signals for analysis or receive instructions from external devices to modulate their interactions with tissue. However, this task is inherently challenging because the communication method should be (i) non-invasive, meaning no components extruding through tissue, (ii) low-power, to be able to acquire data continuously over an extended period of time (iii) high-speed, to allow transmission of complex biological data acquired, (iv) controllable, to allow communication over a defined depth in the tissue. The overall objective of this work is to develop an ion-based, high-speed communication scheme to enable non-invasive and safe transmission of signals without the need of components that extrude through tissue. The rationale for the proposed work is that ions in biological tissue can be used to transfer information at high speeds and low power to the outside of body. The educational goal of the project is to provide hands-on experience for students by developing fully bio-compatible and inexpensive devices for ionic communication. The proposed research is expected to not only advance the field of bioelectronics by improving understanding of key principles governing communication across the body, but also result in positive impact to society at large. To understand and modulate physiologic functions, implantable bioelectronic devices should be capable of safely communicating the high spatiotemporal resolution bio-signals with high speed and low power consumption to devices located outside the body. This communication and data transfer should be accomplished through a non-invasive path with no elements that extrude through tissue to minimize discomfort, mobility complications, and risk of tissue damage or infection. Ionic communication, which leverages the ion-rich nature of biological tissue to transmit signals through intact surfaces, could fulfill these requirements and address the limitations of current electronic charge carrier-based approaches. However, there is a clear lack of knowledge regarding how to use ionic communication to establish a high speed, low-power, and biocompatible communication medium across biological tissue. The objective of the proposed research is to combine optimal properties for an abiotic/biotic transmission interface: biocompatibility, conformability, miniaturization, low power consumption, efficient interaction with the body’s ionic signals, and ability to transmit data at speeds relevant to electrophysiological processes. Specific aims for the project are: (1) establish the physical, material and geometrical requirements to enable ionic communication; and (2) define the physical parameters that govern the spatial propagation of ionic signals through tissue. Overall, ionic communication could result in significant medical and social benefits by simplifying data transmission from bioelectronic devices and enabling application to situations in which use of transcutaneous connectors or bulky implanted electronics is prohibitive.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从体内发送和接收信息的能力对科学和医学应用至关重要。几乎所有可植入的电子设备都需要与外部世界通信,才能传输获取的生物信号进行分析,或者从外部设备接收指令,以调节它们与组织的相互作用。然而,这项任务本身就具有挑战性,因为通信方法应该是(I)非侵入性的,这意味着没有组件挤过组织,(Ii)低功率,以便能够在延长的时间段上连续获取数据,(Iii)高速,以允许传输所获取的复杂生物数据,(Iv)可控,以允许在组织中限定的深度上进行通信。这项工作的总体目标是开发一种基于离子的高速通信方案,以实现信号的非侵入性和安全传输,而不需要从组织中挤出的组件。这项拟议工作的基本原理是,生物组织中的离子可以用来以高速和低功率的方式将信息传输到体外。该项目的教育目标是通过开发完全生物兼容的廉价离子通信设备,为学生提供动手体验。预计拟议的研究不仅将通过提高对管理全身沟通的关键原则的理解来推动生物电子学领域的发展,而且还将对整个社会产生积极影响。为了理解和调节生理功能,植入式生物电子设备应该能够安全地将高时空分辨率的生物信号高速、低功耗地传输到位于体外的设备。这种交流和数据传输应该通过非侵入性途径完成,没有任何元素穿过组织,以最大限度地减少不适、活动并发症和组织损伤或感染的风险。离子通信利用生物组织富含离子的特性,通过完整的表面传输信号,可以满足这些要求,并解决当前基于电子电荷载体的方法的局限性。然而,关于如何使用离子通信来建立跨生物组织的高速、低功率和生物兼容的通信介质,显然缺乏知识。这项研究的目标是将非生物/生物传输接口的最佳特性结合在一起:生物兼容性、一致性、小型化、低功耗、与人体离子信号的有效交互以及以与电生理过程相关的速度传输数据的能力。该项目的具体目标是:(1)确定实现离子通信的物理、材料和几何要求;(2)确定管理离子信号通过组织的空间传播的物理参数。总体而言,离子通信可以简化生物电子设备的数据传输,并使其能够应用于禁止使用经皮连接器或笨重的植入电子设备的情况,从而带来显著的医疗和社会效益。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dion Khodagholy其他文献

Closed-loop electrical stimulation prevents focal epilepsy progression and long-term memory impairment
闭环电刺激可预防局灶性癫痫进展和长期记忆障碍
  • DOI:
    10.1038/s41593-025-01988-1
  • 发表时间:
    2025-06-23
  • 期刊:
  • 影响因子:
    20.000
  • 作者:
    Jose J. Ferrero;Ahnaf R. Hassan;Zelin Yu;Zifang Zhao;Liang Ma;Cynthia Wu;Shan Shao;Takeshi Kawano;Judah Engel;Werner Doyle;Orrin Devinsky;Dion Khodagholy;Jennifer N. Gelinas
  • 通讯作者:
    Jennifer N. Gelinas
Spatial control of doping in conducting polymers enables complementary, conformable, implantable internal ion-gated organic electrochemical transistors
导电聚合物中掺杂的空间控制能够实现互补、适配、可植入的内部离子门控有机电化学晶体管
  • DOI:
    10.1038/s41467-024-55284-w
  • 发表时间:
    2025-01-09
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Duncan J. Wisniewski;Liang Ma;Onni J. Rauhala;Claudia Cea;Zifang Zhao;Alexander Ranschaert;Jennifer N. Gelinas;Dion Khodagholy
  • 通讯作者:
    Dion Khodagholy

Dion Khodagholy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dion Khodagholy', 18)}}的其他基金

NCS-FO: Conformable, expandable neural interface devices to assay natural cognitive maturation of the developing brain
NCS-FO:顺应性、可扩展的神经接口设备,用于测定发育中大脑的自然认知成熟度
  • 批准号:
    2219891
  • 财政年份:
    2022
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
CAREER: Soft, biocompatible ion-based transistors for responsive neuroelectronic devices
职业:用于响应神经电子设备的柔软、生物相容性离子晶体管
  • 批准号:
    1944415
  • 财政年份:
    2020
  • 资助金额:
    $ 8万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
EAGER: Innovation in Society Study Group
EAGER:社会创新研究小组
  • 批准号:
    2348836
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
EAGER: Accelerating decarbonization by representing catalysts with natural language
EAGER:通过用自然语言表示催化剂来加速脱碳
  • 批准号:
    2345734
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了