CAREER: Pushing the Performance Limit of Composite Structures: Integrated Modeling of Manufacturing Processes and Materials

职业:突破复合结构的性能极限:制造工艺和材料的集成建模

基本信息

  • 批准号:
    1944633
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

This Faculty Early Career Development (CAREER) grant will focus on understanding fundamental aspects of fiber-reinforced polymer composite manufacturing processes, developing high-fidelity, physics-based models to predict the processing–performance relation of fibrous composites, and building an inclusive workforce pipeline for the U.S. composites manufacturing industry. Adoption of lightweight composites for structural components is transforming the transportation industry, which pursues improved vehicle performance, better fuel economy, and reduced emissions. However, manufacturing these advanced composites involves complex processes that inevitably cause part variability and unintended defects, such as voids, fiber wrinkles, residual stresses, and geometric distortions. The lack of robust modeling tools makes the composite manufacturers heavily reliant on trial-and-error approaches to minimize part variability, resulting in high manufacturing costs and limiting innovations for new process and part designs. This research project will develop an in-depth understanding of defects and variability arising from manufacturing processes, and will elucidate the correlation between the constituent properties, processing conditions, and structural performance. The resulting predictive models will lead to significant cost savings in new process and product development which achieves consistent and improved quality of composite components. The research program will be integrated with a diverse range of education and outreach activities, including developing an online certificate program in composites to prepare students for jobs in advanced manufacturing, providing research opportunities to college and high school students, and informing the general public about the societal impact of composites and career opportunities through museum demonstrations.The research goal is to predict the processing-induced defects and develop manufacturing strategies to improve the performance of advanced fiber-reinforced polymer matrix composites through an integrated multi-physics and multiscale modeling framework in conjunction with a novel in-situ process monitoring method. Specific aims include: (1) investigation of wrinkle formation through a novel, fabric architecture-based hyper-thermo-viscoelastic model; (2) prediction of dual-scale voids and dimensional variability through a coupled flow-compaction-cure model; and (3) integration of processing-induced defects and data from in-situ process monitoring sensors with composite performance prediction. Our knowledge of composites manufacturing will be significantly increased through: (1) formulation of a novel fabric architecture-based mechanics model to capture fiber wrinkling during the draping and curing processes; (2) incorporation of a unique hyper-thermo-viscoelastic model to dictate the constitutive response of a curing composite; (3) implementation of coupled resin flow and curing models to investigate void formation and migration; (4) integration of processing-induced defects with performance predictions; and (5) novel in-process and in-service monitoring techniques for life-cycle assessment. The research will result in an integrated physics-based process and performance modeling framework for virtual design, manufacturing, and analysis of advanced composite structures. This will accelerate the adoption of new materials, processes, and part designs for enhanced structural performance through computational modeling, effectively breaking down the walls between manufacturers, engineers, material scientists, and researchers, which will transform the traditional methodology for composites manufacturing and design.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展(CAREER)资助将专注于了解纤维增强聚合物复合材料制造工艺的基本方面,开发高保真,基于物理的模型来预测纤维复合材料的加工性能关系,并为美国建立包容性的劳动力管道复合材料制造业。采用轻质复合材料作为结构部件正在改变交通运输行业,追求更好的车辆性能,更好的燃油经济性和减少排放。然而,制造这些先进的复合材料涉及复杂的工艺,不可避免地会导致零件的变化和意外的缺陷,如空隙,纤维褶皱,残余应力和几何变形。由于缺乏强大的建模工具,复合材料制造商严重依赖试错法来最大限度地减少零件的可变性,导致制造成本高,并限制了新工艺和零件设计的创新。该研究项目将深入了解制造过程中产生的缺陷和变化,并阐明组成特性,加工条件和结构性能之间的相关性。由此产生的预测模型将导致新工艺和产品开发的显着成本节约,从而实现复合材料组件的一致和改进的质量。该研究计划将与各种教育和推广活动相结合,包括开发复合材料在线证书课程,为学生在先进制造业的工作做好准备,为大学和高中学生提供研究机会,并通过博物馆展示向公众宣传复合材料的社会影响和就业机会。研究目标是预测复合材料的加工过程-诱导缺陷和开发制造策略,以提高先进的纤维增强聚合物基复合材料的性能,通过一个集成的多物理场和多尺度建模框架,结合一种新的原位过程监测方法。具体目标包括:(1)通过一种新的基于织物结构的超热粘弹性模型研究褶皱的形成;(2)通过一种耦合的流动-压实-固化模型预测双尺度空隙和尺寸变化;(3)将加工引起的缺陷和来自现场工艺监测传感器的数据与复合材料性能预测相结合。我们对复合材料制造的认识将通过以下几个方面得到显著提高:(1)建立一种新的基于织物结构的力学模型,以捕捉悬垂和固化过程中的纤维缠结;(2)引入一种独特的超热粘弹性模型,以描述固化复合材料的本构响应;(3)实现耦合树脂流动和固化模型,以研究孔隙的形成和迁移;(4)将工艺引起的缺陷与性能预测相结合;(5)用于寿命周期评估的新的过程中和使用中监测技术。该研究将为先进复合材料结构的虚拟设计、制造和分析提供一个集成的基于物理的过程和性能建模框架。这将加速采用新材料、工艺和部件设计,通过计算建模来增强结构性能,有效地打破制造商、工程师、材料科学家和研究人员之间的壁垒,这将改变复合材料制造和设计的传统方法。该奖项反映了NSF的法定使命,并通过使用基金会的评估被认为值得支持知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dianyun Zhang其他文献

An experimentally validated failure model for bioresorbable composites subject to flexural loading
  • DOI:
    10.1016/j.jcomc.2022.100258
  • 发表时间:
    2022-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Haotian Sun;Bryant Heimbach;Mei Wei;Dianyun Zhang
  • 通讯作者:
    Dianyun Zhang
Effect of Fiber Waviness on Processing and Performance of Textile Composites
纤维波纹度对纺织复合材料加工和性能的影响
  • DOI:
    10.2514/6.2022-0505
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Enos;Dianyun Zhang
  • 通讯作者:
    Dianyun Zhang
A three-dimensional progressive damage model for drop-weight impact and compression after impact
落锤冲击和冲击后压缩的三维渐进损伤模型
  • DOI:
    10.1177/0021998319859050
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    D. Pham;J. Lua;Haotian Sun;Dianyun Zhang
  • 通讯作者:
    Dianyun Zhang
Progressive Damage and Failure Analysis of 3D Textile Composites Subjected to Flexural Loading.
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dianyun Zhang
  • 通讯作者:
    Dianyun Zhang
Experimental Investigation on the Deformation Response of Hybrid 3D Woven Composites
混合 3D 编织复合材料变形响应的实验研究
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Pankow;C. Yen;M. Rudolph;B. Justusson;Dianyun Zhang;A. Waas
  • 通讯作者:
    A. Waas

Dianyun Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dianyun Zhang', 18)}}的其他基金

CAREER: Pushing the Performance Limit of Composite Structures: Integrated Modeling of Manufacturing Processes and Materials
职业:突破复合结构的性能极限:制造工艺和材料的集成建模
  • 批准号:
    2105448
  • 财政年份:
    2020
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似海外基金

Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
  • 批准号:
    BB/X007669/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
Pushing the limits of electronic delocalization in organic molecules
突破有机分子电子离域的极限
  • 批准号:
    DE240100664
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Early Career Researcher Award
Galactic Outflows: Pushing the Distance Frontiers
银河流出:推动距离边界
  • 批准号:
    DE240100136
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Early Career Researcher Award
Pushing the Limits of High-Field Solid-State NMR Technology: Enhancing Applications to Advanced Materials, the Life Sciences and Pharmaceuticals
突破高场固态核磁共振技术的极限:增强先进材料、生命科学和制药的应用
  • 批准号:
    EP/Z532836/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
  • 批准号:
    BB/X00760X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
Conference: Pushing Towards Open-Source AI
会议:推动开源人工智能
  • 批准号:
    2335774
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CAREER: Pushing the Practicality of Secure Multiparty Computation
职业:推动安全多方计算的实用性
  • 批准号:
    2236819
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER: Ultrafast Quantum Networks: Pushing the Limits of Photon Production
职业:超快量子网络:突破光子生产的极限
  • 批准号:
    2239327
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Development of steady rest that can adjust pushing force based on analysis of grinding stock in cylindrical traverse grinding
基于外圆横动磨削磨削坯料分析的可调节推力中心架的研制
  • 批准号:
    23K03604
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Pushing the Envelope: Defining a Cytoskeletal-like Protein Required for Spore Development
突破极限:定义孢子发育所需的类细胞骨架蛋白
  • 批准号:
    BB/X008533/1
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了