CAREER: Angstrom-Precise Manufacturing Guided by Incommensurate Interfaces and Surfaces in Two-dimensional Layered Materials

职业:以二维层状材料中不相称的界面和表面为指导的埃精密制造

基本信息

  • 批准号:
    1944638
  • 负责人:
  • 金额:
    $ 59.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) grant supports the investigation of scalable additive and subtractive manufacturing processes with extreme (sub-nanometer, Ångström-scale) precision in two-dimensional layered materials. Novel materials processing methods stemming from this research will broadly benefit U.S. advanced manufacturing through newfound ability to deterministically and scalably manipulate matter at unprecedented length scales, thereby greatly impacting high-technology sectors such as biopharmaceuticals, optoelectronics, and semiconductor manufacturing. The resulting new knowledge from this fundamental research advances capabilities to manufacture materials with Ångström-precise features, such as highly-uniform nano-pore, nano-channel, and nano-island arrays, achieving ultimate resolution and scales not currently attainable through state-of-the-art techniques. The integration of research with educational and outreach initiatives, including the development of children’s read-along books and research engagement with underrepresented/underprivileged middle-school, community college and veteran students, collectively help foster the training of a diverse and globally-competitive advanced manufacturing workforce. The ever-growing diversity of two-dimensional layered materials (2DLMs) endows their versatility as the ultimate Ångström-scale building blocks for bottom-up, layer-by-layer additive and subtractive manufacturing with atomic precision and nearly limitless configurations. Uniquely, the atomically-thin, anisotropic nature of 2DLMs enables arbitrary engineering of Moiré domains via incommensurate interfaces, which opens novel routes for Ångström-precise feature patterning with deterministic control over the exact lattice geometry, atomic/molecular terminations, and local stoichiometries. Generalizable to arbitrary 2DLMs beyond the prototypical graphene, hexagonal boron nitride, transition-metal compounds, and numerous (M)Xenes, this research investigates the fundamental process-structure-property relations of highly-periodic, Ångström-precise features engineered via deterministic rotational/translational turbostratic misalignment. Empirical studies elucidate the mechanisms underlying the self-limiting and spatially-selective chemical functionalization (additive) and etching (subtractive) reactions with energetic plasma species that yield massively-parallel features, such as large-scale arrays of highly monodispersed nano-pores, nano-channels (subtractive), and nano-islands (additive). Scalability of this methodology is investigated through translating phenomena observed from nano/micron-scale samples to the processing of centimeter-scale 2DLM sheets, with the desired Ångström-precise morphologies informed through inverse design guided by machine learning models trained on process parameters and metrology data. The resulting capabilities to manipulate and manufacture Ångström-precise features in 2DLMs provide new pathways toward tailored molecular sieves and ultra-high-density devices and instrumentation platforms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展(Career)基金支持研究二维层状材料中具有极端(亚纳米,Ångström-scale)精度的可扩展增材和减材制造工艺。源于这项研究的新型材料加工方法将通过在前所未有的长度尺度上确定和可扩展地操纵物质的新能力,广泛地惠及美国先进制造业,从而极大地影响生物制药、光电子和半导体制造等高科技行业。从这项基础研究中获得的新知识提高了制造具有Ångström-precise特征的材料的能力,例如高度均匀的纳米孔、纳米通道和纳米岛阵列,实现了目前通过最先进的技术无法实现的最终分辨率和规模。将研究与教育和推广活动相结合,包括开发儿童读物,并与代表性不足/贫困的中学、社区大学和退伍军人进行研究合作,共同有助于培养多样化和具有全球竞争力的先进制造业劳动力。二维层状材料(2dlm)的不断增长的多样性赋予了它们的多功能性,使其成为自下而上,一层一层的加法和减法制造的终极构建模块,具有原子精度和几乎无限的配置。独特的是,2dlm的原子薄、各向异性特性使其能够通过不匹配的界面任意设计moir<s:1>结构域,这为Ångström-precise特征图图化开辟了新的途径,并具有对精确晶格几何形状、原子/分子末端和局部化学计量的确定性控制。除了典型的石墨烯、六方氮化硼、过渡金属化合物和众多(M)Xenes之外,该研究还可推广到任意2DLMs,研究了通过确定性旋转/平移涡层失调设计的高周期、Ångström-precise特征的基本过程-结构-性质关系。经验研究阐明了具有自我限制和空间选择性的化学功能化(加法)和蚀刻(减法)反应的机制,这些反应与高能等离子体产生大量平行特征,如高度单分散的纳米孔、纳米通道(减法)和纳米岛(加法)的大规模阵列。通过将从纳米/微米尺度样品观察到的现象转化为厘米尺度2DLM薄片的处理,研究了该方法的可扩展性,并通过由工艺参数和计量数据训练的机器学习模型指导的逆向设计来获得所需的Ångström-precise形态。由此产生的在2dlm中操纵和制造Ångström-precise特性的能力为定制分子筛和超高密度设备和仪器平台提供了新的途径。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Top-Down Processing Towards Ångström-Thin Two-Dimensional (2D) Elemental Metals
自上而下的超薄二维 (2D) 元素金属加工
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Cai Wang其他文献

Strained two-dimensional tungsten diselenide for mechanically tunable exciton transport
应变二维二硒化钨用于机械可调激子输运
  • DOI:
    10.1038/s41467-024-55135-8
  • 发表时间:
    2024-12-30
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Jin Myung Kim;Kwang-Yong Jeong;Soyeong Kwon;Jae-Pil So;Michael Cai Wang;Peter Snapp;Hong-Gyu Park;SungWoo Nam
  • 通讯作者:
    SungWoo Nam

Michael Cai Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Angstrom
  • 批准号:
    10066890
  • 财政年份:
    2023
  • 资助金额:
    $ 59.31万
  • 项目类别:
    Collaborative R&D
Single molecule localization microscopy via angstrom-scale three-dimensional imaging of electron spin labels
通过电子自旋标记的埃级三维成像进行单分子定位显微镜
  • 批准号:
    10477321
  • 财政年份:
    2021
  • 资助金额:
    $ 59.31万
  • 项目类别:
SBIR Phase I: Full surface angstrom-level contamination and defect detection on thin glass samples
SBIR 第一阶段:薄玻璃样品的全表面埃级污染和缺陷检测
  • 批准号:
    2126628
  • 财政年份:
    2021
  • 资助金额:
    $ 59.31万
  • 项目类别:
    Standard Grant
Single molecule localization microscopy via angstrom-scale three-dimensional imaging of electron spin labels
通过电子自旋标记的埃级三维成像进行单分子定位显微镜
  • 批准号:
    10280393
  • 财政年份:
    2021
  • 资助金额:
    $ 59.31万
  • 项目类别:
Single molecule localization microscopy via angstrom-scale three-dimensional imaging of electron spin labels
通过电子自旋标记的埃级三维成像进行单分子定位显微镜
  • 批准号:
    10707059
  • 财政年份:
    2021
  • 资助金额:
    $ 59.31万
  • 项目类别:
CAREER: Probing Chemistry of Surface-Supported Nanostructures at the Angstrom-Scale
职业:埃级表面支撑纳米结构的化学探索
  • 批准号:
    1944796
  • 财政年份:
    2020
  • 资助金额:
    $ 59.31万
  • 项目类别:
    Continuing Grant
Development of single-molecule measurement with angstrom precision
开发埃级精度的单分子测量
  • 批准号:
    18H02418
  • 财政年份:
    2018
  • 资助金额:
    $ 59.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Sub-angstrom characterization of nitrogen-doped graphene with stabilized platinum atoms and clusters for fuel cell research
用于燃料电池研究的具有稳定铂原子和团簇的氮掺杂石墨烯的亚埃表征
  • 批准号:
    475658-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 59.31万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Visit to Sciencetech Inc. and Angstrom Engineering by Prof. F. Rosei and Dr. R. Nechache (INRS) to explore potential research partnerships
F. Rosei 教授和 R. Nechache 博士 (INRS) 访问 Sciencetech Inc. 和 Angstrom Engineering,探索潜在的研究合作伙伴关系
  • 批准号:
    477394-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 59.31万
  • 项目类别:
    Interaction Grants Program
Establishing a partnership between U of Toronto and Angstrom Engineering to investigate interfaces in organic electronics
多伦多大学和 Angstrom Engineering 建立合作伙伴关系,研究有机电子学中的界面
  • 批准号:
    435279-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 59.31万
  • 项目类别:
    Engage Grants Program
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了