Single molecule localization microscopy via angstrom-scale three-dimensional imaging of electron spin labels
通过电子自旋标记的埃级三维成像进行单分子定位显微镜
基本信息
- 批准号:10280393
- 负责人:
- 金额:$ 29.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAntibodiesArchitectureBackBiologicalBiological ProcessBiologyCaliberCellsCollectionComplexDataDetectionDevelopment PlansDiseaseElectronsExplosionFreezingFrequenciesGenetic TranscriptionGoalsImageIndividualLabelLocationLocomotionMagnetic ResonanceMagnetic Resonance ImagingMagnetismMapsMechanicsMicroscopeMicroscopyMolecular MachinesMotionNoiseNucleic AcidsOpticsOrganellesPhysiologic pulsePositioning AttributeProteinsProtocols documentationResolutionRoleSamplingSchemeSignal TransductionSourceSpin LabelsStructureSurfaceTechnologyTemperatureThree-Dimensional ImagingTimeTranslationsVacuumWorkcantilevercold temperaturecryogenicsdensitydetectorexperimental studyimprovedinnovationirradiationmagnetic fieldmicrowave electromagnetic radiationmicrowave imagingnanometernew technologynovelprotein complexpublic health relevancereconstructionsimulationsingle moleculetechnology developmenttheoriestherapy design
项目摘要
Summary
The ability to determine the three-dimensional location of fluorescently labeled biomolecules in cells with 10 to 70
nm resolution has led to an explosion of discoveries in biology. Super-resolution optical microscopy has led to recent
dramatic breakthroughs in our understanding of the organization of molecules in a wide variety of protein assemblies
and has led to discoveries of new supramolecular architectures present in organelles. The spatial resolution typically
achieved by super-resolution optical microscopy remains, frustratingly, considerably larger than most biomolecules.
The goal of this technology development proposal is to create a technology for localizing individual biomolecules
with angstrom precision. We propose a technology for localizing molecules using spin labels. The proposed work
will employ a magnetic resonance force microscope, in which an attonewton-sensitivity cantilever with a 100
nanometer diameter magnetic tip is operated near a sample surface in high vacuum at cryogenic temperatures.
The magnet-tipped cantilever serves two roles. It acts as a force-gradient detector, enabling the observation of
magnetic resonance from individual electron spins as a shift of the cantilever's mechanical resonance frequency. It
furthermore provides a source of magnetic field gradient, 5 gauss/angstrom or larger, that makes possible the three
dimensional magnetic resonance imaging of individual electron spin labels with angstrom spatial resolution. Proof-
of-concept data has been acquired demonstrating the ability to detect magnetic resonance from 100's of nitroxide
spin labels and to spatially resolve electron spin density at a resolution 100 times smaller than the diameter of the
magnetic tip.
We present a stepwise technology development plan — backed by theory, simulations, and preliminary data
— for achieving the detection of individual nitroxide spin labels and imaging their locations in three dimensions
with angstrom precision. Proposed innovations include achieving near-unity spin polarization by operating at high
magnetic field and low temperature using novel cryogenic chip-scale microwave sources, employing better inter-
ferometric cantilever position detectors and spin modulation schemes to evade sample-related noise, harnessing
synchronized cantilever and spin excitation pulse sequences to achieve high fidelity spin modulation, developing
robust Bayesian image collection and reconstruction protocols, and fabricating improved cantilevers and magnetic
tips for increased per-spin sensitivity. The technology will be validated using well characterized nucleic-acid rulers,
biomolecules, protein complexes, and antibodies. Proof-of-concept experiments will be carried out to demonstrate
the applicability of the technology to flash frozen biological samples and the ability to carry out correlative fluo-
rescent localization experiments. Taken together the proposed work represents a new technology for localizing an
individual (spin-labeled and fluorescently labeled) biomolecule in a flash-frozen cell with angstrom precision.
概括
能够确定 10 至 70 个细胞中荧光标记生物分子的三维位置
纳米分辨率导致了生物学发现的爆炸式增长。超分辨率光学显微镜最近
我们对各种蛋白质组装体中分子组织的理解取得了巨大突破
并导致细胞器中新的超分子结构的发现。空间分辨率通常
令人沮丧的是,通过超分辨率光学显微镜获得的分子仍然比大多数生物分子大得多。
该技术开发提案的目标是创建一种用于定位单个生物分子的技术
以埃的精度。我们提出了一种使用自旋标签定位分子的技术。拟议的工作
将采用磁共振力显微镜,其中阿托牛顿灵敏度悬臂梁具有 100
纳米直径的磁性尖端在高真空和低温下在样品表面附近操作。
磁头悬臂有两个作用。它充当力梯度检测器,能够观察
随着悬臂机械共振频率的变化,单个电子自旋产生的磁共振。它
此外还提供了 5 高斯/埃或更大的磁场梯度源,这使得这三种方法成为可能
具有埃空间分辨率的单个电子自旋标签的三维磁共振成像。证明-
已获得概念数据,证明能够从数百个硝基氧中检测磁共振
自旋标签并以比标签直径小 100 倍的分辨率空间解析电子自旋密度
磁性尖端。
我们提出了一个逐步的技术开发计划——以理论、模拟和初步数据为支持
— 用于实现单个硝基氧自旋标签的检测并在三维空间中对它们的位置进行成像
以埃的精度。提出的创新包括通过在高电压下运行来实现近乎一致的自旋极化
磁场和低温使用新型低温芯片级微波源,采用更好的内部
铁测量悬臂梁位置探测器和自旋调制方案可避免与样品相关的噪声,利用
同步悬臂和自旋激发脉冲序列以实现高保真自旋调制,开发
强大的贝叶斯图像采集和重建协议,以及制造改进的悬臂和磁性
提高每次旋转灵敏度的技巧。该技术将使用经过充分表征的核酸标尺进行验证,
生物分子、蛋白质复合物和抗体。将进行概念验证实验来证明
该技术对闪蒸冷冻生物样品的适用性以及进行相关荧光分析的能力
最近的本地化实验。总而言之,拟议的工作代表了一种用于本地化的新技术
快速冷冻细胞中的单个(自旋标记和荧光标记)生物分子具有埃级精度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN A MAROHN其他文献
JOHN A MAROHN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN A MAROHN', 18)}}的其他基金
Single molecule localization microscopy via angstrom-scale three-dimensional imaging of electron spin labels
通过电子自旋标记的埃级三维成像进行单分子定位显微镜
- 批准号:
10477321 - 财政年份:2021
- 资助金额:
$ 29.5万 - 项目类别:
Single molecule localization microscopy via angstrom-scale three-dimensional imaging of electron spin labels
通过电子自旋标记的埃级三维成像进行单分子定位显微镜
- 批准号:
10707059 - 财政年份:2021
- 资助金额:
$ 29.5万 - 项目类别:
A cryo-electron microscopy training and sample-preparation research proposal
冷冻电子显微镜培训和样品制备研究计划
- 批准号:
8457701 - 财政年份:2013
- 资助金额:
$ 29.5万 - 项目类别:
Cantilever Magnetic Resonance Microscopy of Biomolecules
生物分子的悬臂磁共振显微镜
- 批准号:
7071865 - 财政年份:2004
- 资助金额:
$ 29.5万 - 项目类别:
Cantilever Magnetic Resonance Microscopy of Biomolecules
生物分子的悬臂磁共振显微镜
- 批准号:
7442122 - 财政年份:2004
- 资助金额:
$ 29.5万 - 项目类别:
Cantilever Magnetic Resonance Microscopy of Biomolecules
生物分子的悬臂磁共振显微镜
- 批准号:
6898294 - 财政年份:2004
- 资助金额:
$ 29.5万 - 项目类别:
Cantilever Magnetic Resonance Microscopy of Biomolecules
生物分子的悬臂磁共振显微镜
- 批准号:
6710808 - 财政年份:2004
- 资助金额:
$ 29.5万 - 项目类别:
Cantilever Magnetic Resonance Microscopy of Biomolecules
生物分子的悬臂磁共振显微镜
- 批准号:
7234446 - 财政年份:2004
- 资助金额:
$ 29.5万 - 项目类别:
相似海外基金
University of Aberdeen and Vertebrate Antibodies Limited KTP 23_24 R1
阿伯丁大学和脊椎动物抗体有限公司 KTP 23_24 R1
- 批准号:
10073243 - 财政年份:2024
- 资助金额:
$ 29.5万 - 项目类别:
Knowledge Transfer Partnership
Role of Natural Antibodies and B1 cells in Fibroproliferative Lung Disease
天然抗体和 B1 细胞在纤维增生性肺病中的作用
- 批准号:
10752129 - 财政年份:2024
- 资助金额:
$ 29.5万 - 项目类别:
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
- 批准号:
2339201 - 财政年份:2024
- 资助金额:
$ 29.5万 - 项目类别:
Continuing Grant
Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
- 批准号:
MR/Y008693/1 - 财政年份:2024
- 资助金额:
$ 29.5万 - 项目类别:
Research Grant
Discovery of novel nodal antibodies in the central nervous system demyelinating diseases and elucidation of the mechanisms through an optic nerve demyelination model
发现中枢神经系统脱髓鞘疾病中的新型节点抗体并通过视神经脱髓鞘模型阐明其机制
- 批准号:
23K14783 - 财政年份:2023
- 资助金额:
$ 29.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of the mechanisms controlling the physicochemical properties and functions of supercharged antibodies and development of their applications
阐明控制超电荷抗体的理化性质和功能的机制及其应用开发
- 批准号:
23KJ0394 - 财政年份:2023
- 资助金额:
$ 29.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Developing first-in-class aggregation-specific antibodies for a severe genetic neurological disease
开发针对严重遗传神经系统疾病的一流聚集特异性抗体
- 批准号:
10076445 - 财政年份:2023
- 资助金额:
$ 29.5万 - 项目类别:
Grant for R&D
PLA2G2D Antibodies for Cancer Immunotherapy
用于癌症免疫治疗的 PLA2G2D 抗体
- 批准号:
10699504 - 财政年份:2023
- 资助金额:
$ 29.5万 - 项目类别:
Genetic adjuvants to elicit neutralizing antibodies against HIV
基因佐剂可引发抗艾滋病毒中和抗体
- 批准号:
10491642 - 财政年份:2023
- 资助金额:
$ 29.5万 - 项目类别:
Novel Immunogens to Elicit Broadly Cross-reactive Antibodies That Target the Hemagglutinin Head Trimer Interface
新型免疫原可引发针对血凝素头三聚体界面的广泛交叉反应抗体
- 批准号:
10782567 - 财政年份:2023
- 资助金额:
$ 29.5万 - 项目类别:














{{item.name}}会员




