Single molecule localization microscopy via angstrom-scale three-dimensional imaging of electron spin labels
通过电子自旋标记的埃级三维成像进行单分子定位显微镜
基本信息
- 批准号:10707059
- 负责人:
- 金额:$ 30.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAntibodiesArchitectureBiologicalBiological ProcessBiologyCellsCollectionComplexDataDetectionDevelopment PlansDiameterDiseaseElectronsExplosionFreezingFrequenciesFrustrationGenetic TranscriptionGoalsImageIndividualLabelLocationLocomotionMagnetic ResonanceMagnetic Resonance ImagingMagnetismMapsMechanicsMicroscopeMicroscopyMolecular MachinesMotionNoiseNucleic AcidsOpticsOrganellesPhysiologic pulsePositioning AttributeProteinsProtocols documentationResolutionRoleSamplingSchemeSignal TransductionSourceSpin LabelsStructureSurfaceTechnologyTemperatureThree-Dimensional ImagingTimeTranslationsVacuumWorkcantilevercold temperaturecryogenicsdensitydetectorexperimental studyimprovedinnovationirradiationmagnetic fieldmicrowave electromagnetic radiationmicrowave imagingnanometernew technologynovelprotein complexpublic health relevancereconstructionsimulationsingle moleculetechnology developmenttheoriestherapy designultra high resolution
项目摘要
Summary
The ability to determine the three-dimensional location of fluorescently labeled biomolecules in cells with 10 to 70
nm resolution has led to an explosion of discoveries in biology. Super-resolution optical microscopy has led to recent
dramatic breakthroughs in our understanding of the organization of molecules in a wide variety of protein assemblies
and has led to discoveries of new supramolecular architectures present in organelles. The spatial resolution typically
achieved by super-resolution optical microscopy remains, frustratingly, considerably larger than most biomolecules.
The goal of this technology development proposal is to create a technology for localizing individual biomolecules
with angstrom precision. We propose a technology for localizing molecules using spin labels. The proposed work
will employ a magnetic resonance force microscope, in which an attonewton-sensitivity cantilever with a 100
nanometer diameter magnetic tip is operated near a sample surface in high vacuum at cryogenic temperatures.
The magnet-tipped cantilever serves two roles. It acts as a force-gradient detector, enabling the observation of
magnetic resonance from individual electron spins as a shift of the cantilever's mechanical resonance frequency. It
furthermore provides a source of magnetic field gradient, 5 gauss/angstrom or larger, that makes possible the three
dimensional magnetic resonance imaging of individual electron spin labels with angstrom spatial resolution. Proof-
of-concept data has been acquired demonstrating the ability to detect magnetic resonance from 100's of nitroxide
spin labels and to spatially resolve electron spin density at a resolution 100 times smaller than the diameter of the
magnetic tip.
We present a stepwise technology development plan — backed by theory, simulations, and preliminary data
— for achieving the detection of individual nitroxide spin labels and imaging their locations in three dimensions
with angstrom precision. Proposed innovations include achieving near-unity spin polarization by operating at high
magnetic field and low temperature using novel cryogenic chip-scale microwave sources, employing better inter-
ferometric cantilever position detectors and spin modulation schemes to evade sample-related noise, harnessing
synchronized cantilever and spin excitation pulse sequences to achieve high fidelity spin modulation, developing
robust Bayesian image collection and reconstruction protocols, and fabricating improved cantilevers and magnetic
tips for increased per-spin sensitivity. The technology will be validated using well characterized nucleic-acid rulers,
biomolecules, protein complexes, and antibodies. Proof-of-concept experiments will be carried out to demonstrate
the applicability of the technology to flash frozen biological samples and the ability to carry out correlative fluo-
rescent localization experiments. Taken together the proposed work represents a new technology for localizing an
individual (spin-labeled and fluorescently labeled) biomolecule in a flash-frozen cell with angstrom precision.
总结
用10到70个细胞的荧光标记的生物分子的三维位置的能力,
纳米分辨率导致了生物学发现的爆炸式增长。超分辨率光学显微镜导致了最近的
我们对各种蛋白质组装体中分子组织的理解取得了重大突破
并导致发现了细胞器中存在的新的超分子结构。空间分辨率通常
令人沮丧的是,通过超分辨率光学显微镜实现的生物分子仍然比大多数生物分子大得多。
这项技术开发提案的目标是创造一种定位单个生物分子的技术
精确到埃。我们提出了一种技术,使用自旋标签定位分子。拟议工作
将采用磁共振力显微镜,其中具有100
纳米直径的磁性尖端在低温下的高真空中在样品表面附近操作。
磁铁悬臂有两个作用。它作为一个力梯度探测器,能够观察到
磁共振从个别电子自旋作为悬臂的机械共振频率的偏移。它
此外,还提供了5高斯/埃或更大的磁场梯度源,这使得三个
具有埃空间分辨率的单个电子自旋标记的三维磁共振成像。证据-
已经获得了概念数据,证明了从100个氮氧化物中检测磁共振的能力
自旋标记,并在空间上分辨电子自旋密度的分辨率小于100倍的直径,
磁性尖端。
我们提出了一个逐步的技术开发计划-由理论,模拟和初步数据支持
- 为了实现单个氮氧自旋标记的检测并在三维中成像它们的位置
精确到埃。所提出的创新包括通过在高的温度下操作来实现接近统一的自旋极化。
磁场和低温使用新的低温芯片级微波源,采用更好的内部,
用于避免样品相关噪声的悬臂梁位置检测器和自旋调制方案,
同步的悬臂梁和自旋激发脉冲序列,以实现高保真度的自旋调制,
强大的贝叶斯图像收集和重建协议,并制造改进的杠杆和磁
提高每次旋转灵敏度的提示。该技术将使用充分表征的核酸标尺进行验证,
生物分子、蛋白质复合物和抗体。将进行概念验证实验,
该技术对冷冻生物样品的适用性和进行相关检测的能力,
定位实验。总之,拟议的工作代表了一种新的技术,
单个(自旋标记的和荧光标记的)生物分子以埃的精度在螺旋桨冷冻的细胞中。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
mmodel: A workflow framework to accelerate the development of experimental simulations.
- DOI:10.1063/5.0155617
- 发表时间:2023-04
- 期刊:
- 影响因子:0
- 作者:Peter Sun;J. Marohn
- 通讯作者:Peter Sun;J. Marohn
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN A MAROHN其他文献
JOHN A MAROHN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN A MAROHN', 18)}}的其他基金
Single molecule localization microscopy via angstrom-scale three-dimensional imaging of electron spin labels
通过电子自旋标记的埃级三维成像进行单分子定位显微镜
- 批准号:
10477321 - 财政年份:2021
- 资助金额:
$ 30.41万 - 项目类别:
Single molecule localization microscopy via angstrom-scale three-dimensional imaging of electron spin labels
通过电子自旋标记的埃级三维成像进行单分子定位显微镜
- 批准号:
10280393 - 财政年份:2021
- 资助金额:
$ 30.41万 - 项目类别:
A cryo-electron microscopy training and sample-preparation research proposal
冷冻电子显微镜培训和样品制备研究计划
- 批准号:
8457701 - 财政年份:2013
- 资助金额:
$ 30.41万 - 项目类别:
Cantilever Magnetic Resonance Microscopy of Biomolecules
生物分子的悬臂磁共振显微镜
- 批准号:
7071865 - 财政年份:2004
- 资助金额:
$ 30.41万 - 项目类别:
Cantilever Magnetic Resonance Microscopy of Biomolecules
生物分子的悬臂磁共振显微镜
- 批准号:
7442122 - 财政年份:2004
- 资助金额:
$ 30.41万 - 项目类别:
Cantilever Magnetic Resonance Microscopy of Biomolecules
生物分子的悬臂磁共振显微镜
- 批准号:
6898294 - 财政年份:2004
- 资助金额:
$ 30.41万 - 项目类别:
Cantilever Magnetic Resonance Microscopy of Biomolecules
生物分子的悬臂磁共振显微镜
- 批准号:
6710808 - 财政年份:2004
- 资助金额:
$ 30.41万 - 项目类别:
Cantilever Magnetic Resonance Microscopy of Biomolecules
生物分子的悬臂磁共振显微镜
- 批准号:
7234446 - 财政年份:2004
- 资助金额:
$ 30.41万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 30.41万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 30.41万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 30.41万 - 项目类别:
Standard Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 30.41万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 30.41万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 30.41万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 30.41万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 30.41万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 30.41万 - 项目类别:
Standard Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 30.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




