CAREER: Machine Learning Based 4D Decomposition and Distributed Optimization

职业:基于机器学习的 4D 分解和分布式优化

基本信息

  • 批准号:
    1944752
  • 负责人:
  • 金额:
    $ 50.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Distributed optimization arises in a broad range of applications in engineering systems, including electric power systems. While distributed algorithms have been proposed in the literature, comprehensive frameworks are incomplete for decomposing optimization problems on a multi-dimensional basis, such as space and time. In addition, because of deficiencies and challenges in decomposition, coordination, and modeling steps, the majority of existing algorithms suffer from lack of scalability and become computationally expensive when applied to large real-world problems. This proposal focuses on fundamental research on scalable distributed optimization. Several combined machine learning and mathematical models and methods are proposed to create highly scalable, fast, and efficient four-dimensional distributed optimization algorithms for power systems operation and planning. The project will involve diverse students, particularly underrepresented minorities, and significantly improve engineering education, STEM curriculum, workforce training, and K12 students involvement in engineering education.This research will establish machine learning and mathematical-based decomposition and distributed algorithms, which not only reform power system operation and planning but also open new avenues of research to solve computational deficiencies of distributed optimization. Through this project, a temporal decomposition will be developed, and then a comprehensive four-dimensional decomposition will be created. Machine learning-based strategies will be developed to optimally decompose optimization problems. In addition, learning and mathematical approaches will be devised to create highly efficient and scalable asynchronous distributed algorithms. To further reduce computational costs, iterative methods are proposed to reduce the feasible space of optimization problems taking advantage of classification and regression techniques. Furthermore, the project team will develop methods to make distributed algorithms robust against the choice of initial values of optimization variables and objective functions and will devise innovative information-sharing approaches to reduce the computational complexity and enhance the accuracy of the proposed algorithms when integrated into power system operation and planning. The project team will implement the developed models and algorithms on various synthetic test systems and data sets, as well as real-world practical power grids.This project is jointly funded by the ECCS division / EPCN program and the Established Program to Stimulate Competitive Research (EPSCOR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
分布式优化在包括电力系统在内的工程系统中有着广泛的应用。虽然文献中已经提出了分布式算法,但对于空间和时间等多维基础上的优化问题的分解,综合框架是不完整的。此外,由于分解、协调和建模步骤方面的不足和挑战,现有的大多数算法缺乏可扩展性,当应用于大型现实世界问题时,计算代价很高。该方案的重点是可伸缩分布式优化的基础研究。提出了几种机器学习与数学模型和方法相结合的方法,以创建用于电力系统运行和规划的高度可扩展、快速和高效的四维分布式优化算法。该项目将涉及不同的学生,特别是代表不足的少数民族,并显著改善工程教育、STEM课程、劳动力培训和K12学生参与工程教育的情况。这项研究将建立机器学习和基于数学的分解和分布式算法,不仅改革电力系统运行和规划,而且开辟新的研究途径,解决分布式优化的计算缺陷。通过这个项目,将开发一个时间分解,然后将创建一个全面的四维分解。将开发基于机器学习的策略来最优地分解优化问题。此外,还将设计学习和数学方法来创建高效和可扩展的异步分布式算法。为了进一步降低计算成本,提出了利用分类和回归技术来缩小优化问题的可行空间的迭代方法。此外,项目组将开发方法,使分布式算法对优化变量和目标函数的初始值的选择具有健壮性,并将设计创新的信息共享方法,以降低计算复杂性并提高所提出的算法在集成到电力系统运行和规划中时的准确性。项目团队将在各种综合测试系统和数据集以及现实世界的实际电网上实施开发的模型和算法。该项目由ECCS部门/EPCN计划和既定的激励竞争研究计划(EPSCoR)联合资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Temporal Decomposition-Based Stochastic Economic Dispatch for Smart Grid Energy Management
  • DOI:
    10.1109/tsg.2020.2993781
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    9.6
  • 作者:
    F. Safdarian;A. Kargarian
  • 通讯作者:
    F. Safdarian;A. Kargarian
Accelerated and Robust Analytical Target Cascading for Distributed Optimal Power Flow
Momentum extrapolation prediction-based asynchronous distributed optimization for power systems
  • DOI:
    10.1016/j.epsr.2021.107193
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    A. Mohammadi;A. Kargarian
  • 通讯作者:
    A. Mohammadi;A. Kargarian
Hybrid Learning Aided Inactive Constraints Filtering Algorithm to Enhance AC OPF Solution Time
混合学习辅助非活动约束过滤算法可缩短 AC OPF 求解时间
Learning-aided Asynchronous ADMM for Optimal Power Flow
用于优化潮流的学习辅助异步 ADMM
  • DOI:
    10.1109/tpwrs.2021.3120260
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Mohammadi, Ali;Kargarian, Amin
  • 通讯作者:
    Kargarian, Amin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amin Kargarian Marvasti其他文献

Flood-aware Optimal Power Flow for Proactive Day-ahead Transmission Substation Hardening
洪水感知最佳潮流,用于主动日前输电变电站强化

Amin Kargarian Marvasti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amin Kargarian Marvasti', 18)}}的其他基金

CPS: Small: Infusing Quantum Computing, Decomposition, and Learning for Addressing Cyber-Physical Systems Optimization Challenges
CPS:小型:融合量子计算、分解和学习来应对网络物理系统优化挑战
  • 批准号:
    2312086
  • 财政年份:
    2023
  • 资助金额:
    $ 50.39万
  • 项目类别:
    Standard Grant
Toward Equitable Power Infrastructure Resilience
实现公平的电力基础设施弹性
  • 批准号:
    2242643
  • 财政年份:
    2023
  • 资助金额:
    $ 50.39万
  • 项目类别:
    Standard Grant
Collaborative Research: A Global Algorithm for Quadratic Nonconvex AC-OPF Based on Successive Linear Optimization and Convex Relaxation
协作研究:基于逐次线性优化和凸松弛的二次非凸AC-OPF全局算法
  • 批准号:
    1711850
  • 财政年份:
    2017
  • 资助金额:
    $ 50.39万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 50.39万
  • 项目类别:
    Continuing Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
  • 批准号:
    2339216
  • 财政年份:
    2024
  • 资助金额:
    $ 50.39万
  • 项目类别:
    Continuing Grant
CAREER: Integrated and end-to-end machine learning pipeline for edge-enabled IoT systems: a resource-aware and QoS-aware perspective
职业:边缘物联网系统的集成端到端机器学习管道:资源感知和 QoS 感知的视角
  • 批准号:
    2340075
  • 财政年份:
    2024
  • 资助金额:
    $ 50.39万
  • 项目类别:
    Continuing Grant
CAREER: Gaussian Processes for Scientific Machine Learning: Theoretical Analysis and Computational Algorithms
职业:科学机器学习的高斯过程:理论分析和计算算法
  • 批准号:
    2337678
  • 财政年份:
    2024
  • 资助金额:
    $ 50.39万
  • 项目类别:
    Continuing Grant
CAREER: Heterogeneous Neuromorphic and Edge Computing Systems for Realtime Machine Learning Technologies
职业:用于实时机器学习技术的异构神经形态和边缘计算系统
  • 批准号:
    2340249
  • 财政年份:
    2024
  • 资助金额:
    $ 50.39万
  • 项目类别:
    Continuing Grant
CAREER: From Fragile to Fortified: Harnessing Causal Reasoning for Trustworthy Machine Learning with Unreliable Data
职业:从脆弱到坚固:利用因果推理,利用不可靠的数据实现值得信赖的机器学习
  • 批准号:
    2337529
  • 财政年份:
    2024
  • 资助金额:
    $ 50.39万
  • 项目类别:
    Continuing Grant
CAREER: Ethical Machine Learning in Health: Robustness in Data, Learning and Deployment
职业:健康领域的道德机器学习:数据、学习和部署的稳健性
  • 批准号:
    2339381
  • 财政年份:
    2024
  • 资助金额:
    $ 50.39万
  • 项目类别:
    Continuing Grant
CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
  • 批准号:
    2339686
  • 财政年份:
    2024
  • 资助金额:
    $ 50.39万
  • 项目类别:
    Continuing Grant
CAREER: Intelligent Battery Management with Safe, Efficient, Fast-Adaption Reinforcement Learning and Physics-Inspired Machine Learning: From Cells to Packs
职业:具有安全、高效、快速适应的强化学习和物理启发机器学习的智能电池管理:从电池到电池组
  • 批准号:
    2340194
  • 财政年份:
    2024
  • 资助金额:
    $ 50.39万
  • 项目类别:
    Continuing Grant
CAREER: From Dirty Data to Fair Prediction: Data Preparation Framework for End-to-End Equitable Machine Learning
职业:从脏数据到公平预测:端到端公平机器学习的数据准备框架
  • 批准号:
    2341055
  • 财政年份:
    2024
  • 资助金额:
    $ 50.39万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了