CAREER: Multi-Electron Nickel Redox Cycles for Solar Energy Conversion and Storage

职业:用于太阳能转换和存储的多电子镍氧化还原循环

基本信息

  • 批准号:
    1945160
  • 负责人:
  • 金额:
    $ 68.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

The successful implementation of solar energy as a renewable energy resource must overcome the critical challenge of improving light to electric energy conversion efficiency as well as the development of grid-scale energy storage technologies. Dye-sensitized solar cells and redox flow batteries are two promising technologies which could meet these challenges. Importantly, both devices make use of small molecules to facilitate energy conversion and energy storage. In this project, Dr. Farnum of Auburn University is developing chemical compounds derived from inexpensive, earth-abundant metals capable of storing two electrons per molecule. The ability to store more than one electron at a time, results in increased energy storage density (smaller batteries with longer life). Furthermore, the molecules are designed to enable large voltages to be produced, which can lead to improved power. Dr. Farnum's increases student interest in renewable energy conversion and storage through active outreach efforts to the local community. His activities include science demonstrations to middle-schoolers, battery experimentation with high-schoolers, and collaborative summer research projects with undergraduates from local colleges and universities. With funding from the Chemical Structure, Dynamics, and Mechanisms-B Program of the Chemistry Division, Dr. Farnum of Auburn University is developing mechanistic understanding of multi-electron redox reactions at mono-metallic, nickel-based coordination compounds. His work specifically focuses on 4-coodinate nickel (Ni(II)) complexes which undergo two-electron redox chemistry to generate 6-coordinate Ni(IV). These studies are inspired by the demand for higher efficiencies in heterojunction solar cells as well as growing interests in electrochemical energy storage technologies that will allow further implementation of renewable energy resources. The nickel complexes take advantage of distinct changes in coordination environment induced upon electron transfer between d8 Ni(II) and d6 Ni(IV) metal centers. Detailed mechanistic analysis of this redox cycle using electrochemical, spectroscopic, and computational methods may result in a thorough understanding of mechanisms for interconversion between Ni(II) and Ni(IV) oxidation states. Further understanding of these redox couples could lead to increased solar energy conversion in dye-sensitized solar cells and energy storage capacities in redox flow batteries, as well as to new molecular redox couples that take advantage of similar redox cycles. Dr. Farnum is also actively engaged in outreach programs designed to raise awareness of the need for solar energy conversion and storage to the local regions of Alabama and Georgia. Specifically, Dr. Farnum works with Auburn University’s Destination STEM event and Summer Science Institute to engage middle and high school students with interactive learning modules focused on concepts of electrochemical energy storage and energy sustainability. Dr. Farnum also invites undergraduate students from smaller, regional colleges and universities to perform summer research projects in his lab, giving theses students exposure and opportunities to participate in cutting edge research in the conversion and storage of solar energy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
太阳能作为一种可再生能源的成功实施必须克服提高光能转换效率以及发展电网规模储能技术的关键挑战。染料敏化太阳能电池和氧化还原液流电池是两种很有前途的技术,可以应对这些挑战。重要的是,这两种设备都利用小分子来促进能量转换和能量储存。在这个项目中,奥本大学的法纳姆博士正在开发一种化合物,这种化合物来源于廉价的、地球上储量丰富的金属,每个分子可以储存两个电子。一次存储多个电子的能力增加了能量存储密度(更小的电池寿命更长)。此外,这些分子被设计成能够产生大电压,从而提高功率。法纳姆博士通过积极地向当地社区推广,提高了学生对可再生能源转换和储存的兴趣。他的活动包括为中学生做科学演示,为高中生做电池实验,以及与当地高校的本科生合作进行暑期研究项目。在化学学部化学结构、动力学和机理b项目的资助下,奥本大学的法纳姆博士正在研究单金属镍基配位化合物的多电子氧化还原反应机理。他的工作重点是4配位镍(Ni(II))配合物,该配合物通过双电子氧化还原化学生成6配位镍(IV)。这些研究的灵感来自于对异质结太阳能电池更高效率的需求,以及对电化学储能技术日益增长的兴趣,这将允许进一步实施可再生能源。镍配合物利用了d8 Ni(II)和d6 Ni(IV)金属中心之间电子转移引起的配位环境的明显变化。利用电化学、光谱和计算方法对这一氧化还原循环进行详细的机理分析,可能会导致对Ni(II)和Ni(IV)氧化态之间相互转化机制的透彻理解。进一步了解这些氧化还原对可以提高染料敏化太阳能电池的太阳能转换和氧化还原液流电池的能量存储能力,以及利用类似氧化还原循环的新型分子氧化还原对。法纳姆博士还积极参与旨在提高对阿拉巴马州和佐治亚州当地地区太阳能转换和储存需求的认识的外展计划。具体来说,法纳姆博士与奥本大学的目标STEM活动和暑期科学研究所合作,让中学生和高中生参与互动学习模块,重点关注电化学储能和能源可持续性的概念。法纳姆博士还邀请来自小型地区学院和大学的本科生在他的实验室进行暑期研究项目,让这些学生有机会参与太阳能转换和储存的前沿研究。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Zinc-Catalyzed Two-Electron Nickel(IV/II) Redox Couple for Multi-Electron Storage in Redox Flow Batteries
锌催化双电子镍(IV/II)氧化还原对用于氧化还原液流电池中的多电子存储
  • DOI:
    10.1021/acs.inorgchem.2c03124
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Mazumder, Md. Motiur;Dalpati, Niharika;Pokkuluri, P. Raj;Farnum, Byron H.
  • 通讯作者:
    Farnum, Byron H.
Controlling One-Electron vs Two-Electron Pathways in the Multi-Electron Redox Cycle of Nickel Diethyldithiocarbamate
控制二乙基二硫代氨基甲酸镍多电子氧化还原循环中的单电子与双电子途径
  • DOI:
    10.1021/acs.inorgchem.1c01699
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Mazumder, Md. Motiur;Burton, Andricus;Richburg, Chase S.;Saha, Soumen;Cronin, Bryan;Duin, Evert;Farnum, Byron H.
  • 通讯作者:
    Farnum, Byron H.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Byron Farnum其他文献

Byron Farnum的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于Multi-Pass Cell的高功率皮秒激光脉冲非线性压缩关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Multi-decadeurbansubsidencemonitoringwithmulti-temporaryPStechnique
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    80 万元
  • 项目类别:
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
  • 批准号:
    52111530069
  • 批准年份:
    2021
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目
基于8色荧光标记的Multi-InDel复合检测体系在降解混合检材鉴定的应用研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模非确定图数据分析及其Multi-Accelerator并行系统架构研究
  • 批准号:
    62002350
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
3D multi-parameters CEST联合DKI对椎间盘退变机制中微环境微结构改变的定量研究
  • 批准号:
    82001782
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
高速Multi-bit/cycle SAR ADC性能优化理论研究
  • 批准号:
    62004023
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于multi-SNP标记及不拆分策略的复杂混合样本身份溯源研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘—印支块体地壳流追踪中的应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Contorted and Strained Molecular Nanographenes: Multi-Electron Storage and Reduction-Induced Transformations
扭曲和应变的分子纳米石墨烯:多电子存储和还原诱导的转变
  • 批准号:
    2404031
  • 财政年份:
    2024
  • 资助金额:
    $ 68.2万
  • 项目类别:
    Continuing Grant
High speed multi modal in-situ Transmission Electron Microscopy platform
高速多模态原位透射电子显微镜平台
  • 批准号:
    LE240100060
  • 财政年份:
    2024
  • 资助金额:
    $ 68.2万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Multi-modal electron microscopy of 3D racetrack memory
3D 赛道记忆的多模态电子显微镜
  • 批准号:
    EP/X025632/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.2万
  • 项目类别:
    Research Grant
Characterizing Local Chemical Order in Multi-Principal Element Alloys by Femtosecond Time-Resolved Ultrafast Electron Diffraction
通过飞秒时间分辨超快电子衍射表征多主元素合金中的局部化学顺序
  • 批准号:
    2327777
  • 财政年份:
    2023
  • 资助金额:
    $ 68.2万
  • 项目类别:
    Continuing Grant
Investigation of High-Energy Electron Generation Mechanism of Magnetic Reconnection by Soft X-ray Multi-Image Measurements
软X射线多图像测量研究磁重联高能电子产生机制
  • 批准号:
    23KJ0706
  • 财政年份:
    2023
  • 资助金额:
    $ 68.2万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
BRAIN CONNECTS: Multi-beam transmission electron microscopy of iteratively milled semi-thick tissue sections
大脑连接:迭代研磨半厚组织切片的多束透射电子显微镜
  • 批准号:
    10669305
  • 财政年份:
    2023
  • 资助金额:
    $ 68.2万
  • 项目类别:
Multi-purpose Transmission Electron Microscope for Wolfson Bioimaging Facility
用于 Wolfson 生物成像设施的多功能透射电子显微镜
  • 批准号:
    BB/X019799/1
  • 财政年份:
    2023
  • 资助金额:
    $ 68.2万
  • 项目类别:
    Research Grant
Local crystal structure analysis of dopant atoms of carbides in high chromium irons using electron multi-probes
使用电子多探针分析高铬铁中碳化物掺杂原子的局部晶体结构
  • 批准号:
    23K17826
  • 财政年份:
    2023
  • 资助金额:
    $ 68.2万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Elucidation of Intramolecular Energy Transfer and Multi-Electron Reduction Processes in Multinuclear Metal Complexes Using Ultrafast Spectroscopy
使用超快光谱阐明多核金属配合物中的分子内能量转移和多电子还原过程
  • 批准号:
    23KJ1742
  • 财政年份:
    2023
  • 资助金额:
    $ 68.2万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Optimal Sensing of Multi-Dimensional Datasets in Scanning Electron Microscopy (SEM)
扫描电子显微镜 (SEM) 中多维数据集的最佳传感
  • 批准号:
    2748892
  • 财政年份:
    2022
  • 资助金额:
    $ 68.2万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了