CAREER: Equivariant and Infinite-Dimensional Combinatorial Algebraic Geometry
职业:等变和无限维组合代数几何
基本信息
- 批准号:1945212
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Symmetry plays a fundamental role in our mathematical understanding of the world. There are discrete symmetries, like the reflection of a face in a mirror or the hexagonal pattern of floor tiles; and there are continuous groups of symmetries, like the rotations of a sphere about various axes. Among continuous groups, there are those that involve finitely many parameters, as well as infinite-dimensional ones. Objects with finite-dimensional groups of symmetries often admit explicit "combinatorial" descriptions. Infinite-dimensional groups are naturally more complicated. A key goal of this project is to develop a more concrete understanding of infinite-dimensional groups of symmetries and the spaces on which they act. As part of the educational component of the project, the PI will run workshops related to the research and will develop an undergraduate course linking combinatorial mathematics to applications in the community.The research program involves three main topics: Schubert polynomials, which give formulas for the degrees of algebraic varieties locally defined by rank conditions on matrices; Newton-Okounkov bodies, which are convex bodies encoding the geometry of line bundles on projective varieties; and quantum K-theory, which contains refined information about curves on varieties. The main objectives are (1) to complete a package of Schubert polynomials, tying them to the geometry of infinite-dimensional Grassmannians and flag varieties; (2) to numerically compute Newton-Okounkov bodies and use them to construct mirror-symmetric duals of special varieties; and (3) to establish foundational results about the quantum K-theory of homogeneous varieties. A further aim is to apply degeneracy locus techniques to questions ranging from nonlinear optimization to the geometry of linear systems on algebraic curves.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对称性在我们对世界的数学理解中起着基础性的作用。 有离散的对称性,如镜子中的脸的反射或地板砖的六边形图案;也有连续的对称性组,如球体围绕不同轴的旋转。 在连续群中,有那些涉及许多参数的群,也有那些涉及无限维参数的群。 具有有限维对称群的对象通常允许明确的“组合”描述。 无限维群自然更加复杂。 这个项目的一个关键目标是发展一个更具体的理解无限维群的对称性和空间上,他们的行为。 作为该项目教育部分的一部分,PI将举办与研究相关的研讨会,并将开发一门将组合数学与社区应用联系起来的本科课程。研究计划包括三个主要主题:舒伯特多项式,它给出了由矩阵秩条件局部定义的代数簇的次数公式;牛顿-奥肯科夫体,这是凸体编码的几何形状的线丛上的投影品种;和量子K理论,其中包含了细化信息的曲线品种。 主要目标是(1)完成舒伯特多项式的包,将它们与无限维格拉斯曼和旗簇的几何联系起来;(2)数值计算Newton-Okounkov体,并使用它们来构造特殊簇的镜像对称群;(3)建立齐次簇的量子K理论的基础结果。 另一个目标是将退化轨迹技术应用于从非线性优化到代数曲线上线性系统的几何形状等问题。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K-theoretic balancing conditions and the Grothendieck group of a toric variety
K 理论平衡条件和复曲面簇的 Grothendieck 群
- DOI:10.1016/j.jalgebra.2022.07.038
- 发表时间:2022
- 期刊:
- 影响因子:0.9
- 作者:Shah, Aniket
- 通讯作者:Shah, Aniket
Motivic classes of degeneracy loci and pointed Brill‐Noether varieties
简并位点和尖头布里尔-诺特变体的动机类别
- DOI:10.1112/jlms.12547
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Anderson, Dave;Chen, Linda;Tarasca, Nicola
- 通讯作者:Tarasca, Nicola
?-classes of Brill–Noether Loci and a Determinantal Formula
Brill–Noether 轨迹的 ? 类和行列式
- DOI:10.1093/imrn/rnab025
- 发表时间:2021
- 期刊:
- 影响因子:1
- 作者:Anderson, Dave;Chen, Linda;Tarasca, Nicola
- 通讯作者:Tarasca, Nicola
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Anderson其他文献
Bilateral arterial ducts with isolated left subclavian artery in ventriculo-arterial discordance, ventricular septal defect, and coarctation.
双侧动脉导管,左锁骨下动脉孤立,存在心室动脉不一致、室间隔缺损和缩窄。
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:6.2
- 作者:
H. Bellsham;O. Miller;David Anderson;Aaron J. Bell - 通讯作者:
Aaron J. Bell
Harrison’s Principles of Internal Medicine, 16th Edition
哈里森内科医学原理,第 16 版
- DOI:
10.1212/01.wnl.0000161677.02570.30 - 发表时间:
2005 - 期刊:
- 影响因子:9.9
- 作者:
David Anderson - 通讯作者:
David Anderson
Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants.
工程银纳米颗粒在质膜上被感应,并显着改变拟南芥植物的生理机能。
- DOI:
10.1111/tpj.13105 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Arifa Sosan;D. Svistunenko;Darya Y. Straltsova;Katsiaryna Tsiurkina;I. Smolich;T. Lawson;S. Subramaniam;V. Golovko;David Anderson;A. Sokolik;Ian Colbeck;V. Demidchik - 通讯作者:
V. Demidchik
Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function
基础科学232.
- DOI:
10.1093/rheumatology/kes108 - 发表时间:
2012 - 期刊:
- 影响因子:5.5
- 作者:
S. Heathfield;B. Parker;L. Zeef;I. Bruce;Y. Alexander;F. Collins;M. Stone;E. Wang;Anwen S. Williams;H. L. Wright;Huw B. Thomas;R. Moots;S. Edwards;C. Bullock;V. Chapman;D. Walsh;A. Mobasheri;D. Kendall;S. Kelly;R. Bayley;C. Buckley;S. Young;Lisa Rump;J. Middleton;Liye Chen;R. Fisher;S. Kollnberger;N. Shastri;B. Kessler;P. Bowness;A. N. Moideen;L. Evans;L. Osgood;Simon A. Jones;M. Nowell;Younis Mahadik;S. Young;M. Morgan;C. Gordon;L. Harper;J. Giles;B. Morgan;C. Harris;O. Ryśnik;K. McHugh;S. Payeli;O. Marroquin;J. Shaw;C. Renner;S. Nayar;T. Cloake;M. Bombardieri;C. Pitzalis;C. Buckley;F. Barone;P. Lane;M. Coles;E. Williams;C. Edwards;C. Cooper;R. Oreffo;S. Dunn;A. Crawford;M. Wilkinson;C. Maitre;R. Bunning;J. Daniels;K. Phillips;N. Chiverton;C. Maitre;J. Shaw;A. Ridley;I. Wong;S. Keidel;A. Chan;N. Gullick;H. E. Abozaid;David M. Jayaraj;H. Evans;D. Scott;E. Choy;L. Taams;M. Hickling;G. Golor;A. Jullion;S. Shaw;K. Kretsos;S. F. Bari;Brian Rhys;N. Amos;S. Siebert;R. D. Bunning;G. Haddock;A. Cross;I. Kate;E. Phillips;A. Cross;R. D. Bunning;S. Ceeraz;J. Spencer;E. Choy;V. Corrigall;A. Crilly;H. Palmer;J. Lockhart;R. Plevin;W. Ferrell;I. McInnes;D. Hutchinson;L. Perry;M. Dicicco;F. Humby;S. Kelly;R. Hands;I. McInnes;P. Taylor;P. Mehta;A. Mitchell;C. Tysoe;R. Caswell;M. Owens;T. Vincent;T. Hashmi;A. Price;C. Sharp;H. Murphy;E. F. Wood;T. Doherty;J. Sheldon;N. Sofat;I. Goff;P. Platt;R. Abdulkader;G. Clunie;M. Ismajli;E. Nikiphorou;A. Young;N. Tugnet;J. Dixey;S. Banik;D. Alcorn;J. Hunter;W. Maw;Pravin Patil;F. Hayes;W. Wong;F. Borg;B. Dasgupta;A. Malaviya;A. Östör;J. Chana;Azeem Ahmed;S. Edmonds;L. Coward;F. Borg;J. Heaney;N. Amft;John Simpson;V. Dhillon;Yezenash Ayalew;F. Khattak;M. Gayed;R. Amarasena;F. Mckenna;M. M. Laughlin;K. Baburaj;Zozik Fattah;N. Ng;J. Wilson;B. Colaco;Mark Williams;T. Adizie;Matthew C. Casey;S. Lip;S. Tan;David Anderson;Calum Robertson;I. Devanny;M. Field;D. Walker;S. Robinson;S. Ryan;A. Hassell;J. Bateman;Maggie E. Allen;David Davies;C. Crouch;K. Walker;N. Gainsborough;P. Lutalo;U. Davies;Jennifer R. Mckew;Auleen M Millar;S. Wright;A. Bell;M. Thapper;Thalia Roussou;J. Cumming;R. Hull;J. McKeogh;M. O'connor;Ahmed I. Hassan;U. Bond;J. Swan;M. Phelan;D. Coady;Namita Kumar;L. Farrow;M. Bukhari;A. Oldroyd;C. Greenbank;J. Mcbeth;R. Duncan;Deborah Brown;M. Horan;N. Pendleton;A. Littlewood;L. Cordingley;M. Mulvey;E. Curtis;Z. Cole;S. Crozier;N. Georgia;S. Robinson;K. Godfrey;A. Sayer;H. Inskip;N. Harvey;R. Davies;L. Mercer;J. Galloway;Audrey Low;K. Watson;M. Lunt;D. Symmons;K. Hyrich;S. Chitale;C. Estrach;N. Goodson;E. Rankin;C. Jiang;K. Cheng;T. Lam;P. Adab;S. Ling;J. Humphreys;Corrinne Ellis;D. Bunn;S. Verstappen;Elisa Fluess;G. Macfarlane;C. Bond;G. Jones;I. Scott;S. Steer;C. Lewis;A. Cope;M. Mulvey;K. Lovell;P. Keeley;S. Woby;Marcus John Beasley;S. Viatte;D. Plant;B. Fu;C. Solymossy;J. Worthington;A. Barton;F. Williams;Daniel;M. Popham;A. Macgregor;T. Spector;J. Little;A. Herrick;S. Pushpakom;H. Ennis;H. Mcburney;J. Worthington;W. Newman;I. Ibrahim;A. Morgan;A. Wilson;J. Isaacs;T. Sanderson;S. Hewlett;M. Calnan;M. Morris;K. Raza;Kanta Kumar;C. Cardy;J. Pauling;J. Jenkins;S. Brown;N. McHugh;M. Mugford;C. Davies;N. Cooper;A. Brooksby;E. Dures;N. Ambler;Debbie Fletcher;D. Pope;F. Robinson;R. Rooke;C. Gorman;P. Reynolds;A. Hakim;A. Bosworth;D. Weaver;P. Kiely;S. Skeoch;M. Jani;R. Amarasena;C. Rao;E. Macphie;Y. McLoughlin;P. Shah;S. Else;O. Semenova;Helen Thompson;O. Ogunbambi;S. Kallankara;Y. Patel;E. Baguley;J. Halsey;A. Severn;S. Selvan;E. Price;M. Husain;S. Brophy;C. Phillips;R. Cooksey;Elizabeth Irvine;D. Lendrem;S. Mitchell;S. Bowman;C. Pease;P. Emery;J. Andrews;N. Sutcliffe;P. Lanyon;Monica Gupta;J. McLaren;M. Regan;A. Cooper;I. Giles;D. Isenberg;B. Griffiths;H. Foggo;S. Edgar;S. Vadivelu;W. Ng;I. Iqbal;L. Heron;C. Pilling;J. Marks;J. Ledingham;Chenglong Han;T. Gathany;N. Tandon;E. Hsia;P. Taylor;V. Strand;T. Sensky;N. Harta;S. Fleming;L. Kay;M. Rutherford;K. Nicholl;T. Eyre;G. Wilson;Phil Johnson;M. Russell;J. Timoshanko;G. Duncan;A. Spandley;S. Roskell;Louise West;R. Adshead;S. Donnelly;S. Ashton;H. Tahir;D. Patel;J. Darroch;J. Boulton;Benjamin M Ellis;R. Finlay;W. Murray;R. Priori;T. Tappuni;S. Vartoukian;N. Seoudi;G. Picarelli;F. Fortune;G. Valesini;C. Pitzalis;M. Bombardieri;E. Ball;M. Rooney;A. Bell;Á. Mérida;E. Tarelli;J. Axford;C. Pericleous;S. Pierangeli;J. Ioannou;Anisur Rahman;A. Alavi;M. Hughes;B. Evans;A. Zaki;M. Hui;R. Garner;F. Rees;R. Bavakunji;P. Daniel;S. Varughese;A. Srikanth;M. Andrés;F. Pearce;J. Leung;K. Lim;A. Oomatia;M. Petri;H. Fang;J. Birnbaum;M. Amissah;K. Stewart;H. Jennens;S. Braude;E. Sutton;C. Yee;D. Jayne;M. Akil;Y. Ahmad;D. D'cruz;M. Khamashta;L. Teh;A. Zoma;I. Dey;E. Kenu;A. Garza;L. Murfitt;P. Driscoll;S. Pierangeli;Y. Ioannou;J. Reynolds;D. Ray;T. O'Neill;I. Segeda;S. Shevchuk;I. Kuvikova;N. Brown;M. Venning;M. Dhanjal;J. Mason;C. Nelson;N. Basu;P. Paudyal;Marie Stockton;S. Lawton;C. Dent;Kathy Kindness;G. Meldrum;E. John;C. Arthur;Lucy West;Matthew V. Macfarlane;D. Reid;M. Yates;Y. Loke;R. Watts;D. Christidis;Mark Williams;Rajappa Sivakumar;R. Misra;D. Danda;K. Mahendranath;P. Bacon;S. Mackie - 通讯作者:
S. Mackie
A review of Latin American perspectives on museums and museum learning
拉丁美洲博物馆和博物馆学习观点回顾
- DOI:
10.1080/09647775.2012.674321 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Adriana Briseño;David Anderson - 通讯作者:
David Anderson
David Anderson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Anderson', 18)}}的其他基金
Arctic Heritage: Commodification, Identity, and Revitilisation in the Anthropocene
北极遗产:人类世的商品化、身份和复兴
- 批准号:
AH/Y000161/1 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Collaborative Research: Resource Collaborative for Immersive Technologies (RECITE)
协作研究:沉浸式技术资源协作 (RECITE)
- 批准号:
2331451 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Technical Workforce Immersive Teaching and Learning Resources
技术人员沉浸式教学资源
- 批准号:
2202206 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
I-Corps: Analog artificial neural network (ANN) structure with tunable parameters for identification of acoustic events
I-Corps:具有可调参数的模拟人工神经网络 (ANN) 结构,用于识别声学事件
- 批准号:
2050117 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Parahydrogen Matrix Isolation Infrared Spectroscopy and Kinetics
仲氢基质分离红外光谱和动力学
- 批准号:
2101719 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Reaction Networks: Theory, Computation, and Applications
反应网络:理论、计算和应用
- 批准号:
2051498 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
SBIR Phase II: Atom-based magnetic field monitor for turbo-generator fault protection
SBIR 第二阶段:用于涡轮发电机故障保护的基于原子的磁场监测器
- 批准号:
1951214 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
The Political Ecology of Coastal Societies
沿海社会的政治生态
- 批准号:
ES/S013806/1 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Research Grant
PFI-TT: Using machine listening for non-invasive monitoring of the status and wellbeing of commercial poultry flocks
PFI-TT:使用机器监听对商业家禽群的状态和健康进行非侵入性监测
- 批准号:
1919235 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Midwest Workshop on Schubert Calculus
中西部舒伯特微积分研讨会
- 批准号:
1763010 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
Equivariant Schubert calculus for p-compact groups
p-紧群的等变舒伯特微积分
- 批准号:
23K03092 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Equivariant index theory of infinite-dimensional manifolds and related topics
无限维流形等变指数理论及相关主题
- 批准号:
23K12970 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Generalized Steenrod operations and equivariant geometry
广义 Steenrod 运算和等变几何
- 批准号:
2305016 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Deformation on equivariant completions of vector groups into Fano varieties and K-stability
向量组等变完成变形为 Fano 簇和 K 稳定性
- 批准号:
23K03047 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nested sampling from equivariant Graph Neural Networks
等变图神经网络的嵌套采样
- 批准号:
2886221 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Studentship
Rational and equivariant phenomena in chromatic homotopy theory
色同伦理论中的有理和等变现象
- 批准号:
2304781 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Applications of equivariant stable homotopy theory
等变稳定同伦理论的应用
- 批准号:
2301520 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Equivariant Methods in Chromatic Homotopy Theory
色同伦理论中的等变方法
- 批准号:
2313842 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Borsuk-Ulam type invariants and the existence problem of equivariant maps
Borsuk-Ulam型不变量和等变映射的存在问题
- 批准号:
23K03095 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)