CAREER:Cyclotron resonance spectroscopy of interacting fermions
职业:相互作用费米子的回旋共振光谱
基本信息
- 批准号:1945278
- 负责人:
- 金额:$ 84.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical Abstract:The way in which electrons move through materials determines many of the fundamental properties of any system, such as conductivity or reflectivity. In most materials, however, these properties are qualitatively the same whether we consider one electron in isolation, or many moving in concert. More subtle and interesting effects can arise if the electrons interact with one another, in which case emergent behaviors appear that cannot exist for just one or a few electrons: a simple analogy is that ocean waves are the coherent motion of vast numbers of water molecules. Yet connecting the microscopic behavior of interacting electrons to the overall behavior of a material is often challenging. In this work, the principal investigator uses measurements of infrared light shining through thin materials to probe the behavior of interacting electron systems in several interesting cases. These include ultra-clean graphene devices, comprised of single-atom-thick sheets of carbon atoms in which the electrons interact to generate fascinating many-particle quantum states. These devices are also placed in small cavities to greatly amplify the intensity of the infrared light; under these conditions the electrons and waves of light are thought to merge into novel quantum states that forget their origins as separate entities. Finally, in some materials the electrons interact so strongly that none can independently move; yet they are free to rotate in a correlated fashion to yield fascinating, fluid-like behaviors. This physics is exceedingly difficult to isolate and probe, but recent theoretical work suggests that infrared light can discern whether such a fluid-like state is present. In addition, the principle investigator leads diversity initiatives within the Physics Department that are leading to an increase in Latino/a graduate students. These efforts are being coupled to bridge programs operated in the university at large and also by the American Physical Society, toward making the faces in the physics community more representative of the nation as a whole. Technical Abstract:Systems of many interacting particles are both fascinating and enigmatic, exhibiting macroscopic correlated behaviors that are often poorly understood. In this project the principle investigator explores correlated electron physics using infrared magnetospectroscopy, which acquires a novel sensitivity to many-particle interactions when applied to materials that have a linear band structure or non-parabolic dispersion. Such linear systems were once incredibly rare but now arise in multitudes of modern quantum materials. The principle investigator utilizes a dedicated infrared magneto-spectroscopy capability to study graphene and strongly correlated materials in fields up to 14 T and temperatures approaching 100 mK, with optics capable of working with microscopic samples of atomically-thin materials. Upgrades will further enhance signal-to-noise, resolution, and spectral range. This enables explorations of three distinct but inter-related projects: first, spectroscopy of electron-electron interaction effects in the integer and fractional quantum Hall regimes in graphene, toward elucidating their role in symmetry breaking and formation of many-particle ground states. In the second project, these graphene devices are placed in mirrored cavities having a resonance in the infrared to enhance the interaction of light with the cyclotron resonance transitions in graphene. This is predicted to achieve the ultrastrong coupling regime of cavity quantum electrodynamics, vaulting graphene to the forefront of systems hosting strongly interacting light and matter. Moreover, the uneven spacing of graphene Landau levels implies a proper two-level system is achievable, presaging a novel graphene-based qubit operating in the infrared and native to high magnetic fields. In the third project, strongly correlated insulators including SmB6, YbB12, 1T-TaSe2 and 1T-TaS2 are explored. These materials are thought to host an unusual Fermi surface of neutral spinons, specifically predicted to exhibit novel cyclotron resonance modes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
摘要:电子在材料中移动的方式决定了任何系统的许多基本性质,如导电性或反射率。然而,在大多数材料中,无论我们考虑一个孤立的电子还是许多协同运动的电子,这些性质在性质上都是相同的。如果电子相互作用,就会产生更微妙、更有趣的效应,在这种情况下,突现行为似乎不可能只存在于一个或几个电子中:一个简单的类比是,海浪是大量水分子的相干运动。然而,将相互作用的电子的微观行为与材料的整体行为联系起来通常是具有挑战性的。在这项工作中,首席研究员使用红外光穿过薄材料的测量来探测几个有趣案例中相互作用电子系统的行为。其中包括超干净的石墨烯装置,由单原子厚度的碳原子片组成,其中电子相互作用产生迷人的多粒子量子态。这些装置也被放置在小腔中,以极大地放大红外光的强度;在这些条件下,电子和光波被认为融合成新的量子态,忘记了它们作为独立实体的起源。最后,在一些材料中,电子相互作用非常强烈,以至于没有一个电子可以独立移动;然而,它们可以以一种相关的方式自由旋转,从而产生迷人的、类似流体的行为。这种物理非常难以分离和探测,但最近的理论工作表明,红外光可以分辨出这种类似流体的状态是否存在。此外,首席研究员在物理系内领导多元化倡议,导致拉丁裔/非裔研究生的增加。这些努力正在与整个大学和美国物理学会开展的桥梁项目相结合,以使物理界的面孔更能代表整个国家。技术摘要:由许多相互作用的粒子组成的系统既迷人又神秘,它们表现出的宏观相关行为往往很难被理解。在这个项目中,主要研究者利用红外磁谱学探索相关电子物理,当应用于具有线性带结构或非抛物色散的材料时,它获得了对多粒子相互作用的新灵敏度。这样的线性系统曾经非常罕见,但现在在现代量子材料中大量出现。首席研究员利用专用的红外磁光谱学能力,在高达14 T和接近100 mK的温度下研究石墨烯和强相关材料,光学能够处理原子级薄材料的微观样品。升级将进一步提高信噪比、分辨率和频谱范围。这使得探索三个不同但相互关联的项目成为可能:首先,石墨烯中整数和分数量子霍尔体系中电子-电子相互作用效应的光谱学,旨在阐明它们在对称破缺和多粒子基态形成中的作用。在第二个项目中,这些石墨烯器件被放置在具有红外共振的镜像腔中,以增强光与石墨烯中的回旋共振跃迁的相互作用。预计这将实现腔量子电动力学的超强耦合状态,使石墨烯成为承载强相互作用光和物质的系统的前沿。此外,石墨烯朗道能级的不均匀间距意味着可以实现合适的两能级系统,这预示着一种新型的基于石墨烯的量子比特可以在红外和高磁场中工作。在第三个项目中,研究了强相关绝缘子SmB6、YbB12、1T-TaSe2和1T-TaS2。这些材料被认为拥有一个不寻常的中性自旋子费米表面,特别预测会表现出新的回旋加速器共振模式。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Broken Symmetries and Kohn’s Theorem in Graphene Cyclotron Resonance
- DOI:10.1103/physrevx.10.041006
- 发表时间:2020-01
- 期刊:
- 影响因子:0
- 作者:Jordan Pack;B. J. Russell;Yash Kapoor;J. Balgley;Jeff Ahlers;T. Taniguchi;Kenji Watanabe;E. Henriksen
- 通讯作者:Jordan Pack;B. J. Russell;Yash Kapoor;J. Balgley;Jeff Ahlers;T. Taniguchi;Kenji Watanabe;E. Henriksen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erik Henriksen其他文献
Observability of cyclotron resonance in the hydrodynamic regime of bilayer graphene
双层石墨烯流体动力学状态下回旋共振的可观测性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
J. Cruise;Alexander Seidel;Erik Henriksen;Giovanni Vignale - 通讯作者:
Giovanni Vignale
The effects of uplift and erosion on the petroleum systems in the southwestern Barents Sea: Insights from seismic data and 2D petroleum systems modelling
隆升和侵蚀对巴伦支海西南部石油系统的影响:地震数据和二维石油系统建模的见解
- DOI:
10.1016/j.marpetgeo.2023.106535 - 发表时间:
2023 - 期刊:
- 影响因子:4.2
- 作者:
D. Ktenas;Jesper Kresten Nielsen;Erik Henriksen;I. Meisingset;Oliver Schenk - 通讯作者:
Oliver Schenk
Chapter 10 Tectonostratigraphy of the greater Barents Sea: implications for petroleum systems
第 10 章 大巴伦支海的构造地层学:对石油系统的影响
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Erik Henriksen;A. Ryseth;G. B. Larssen;T. Heide;K. Rønning;K. Sollid;A. Stoupakova;Anthony M. Spencer;A. Embry;Donald L. Gautier;Kai Sørensen - 通讯作者:
Kai Sørensen
Erik Henriksen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erik Henriksen', 18)}}的其他基金
Pursuit of Quantum Spin Liquids in Exfoliated Anti-Ferromagnetic Insulators
在剥离反铁磁绝缘体中寻找量子自旋液体
- 批准号:
1810305 - 财政年份:2018
- 资助金额:
$ 84.96万 - 项目类别:
Standard Grant
相似海外基金
Synthra MeIPlus Research with HCN/CO Options and Radchrom Plus for the UAB Cyclotron Facility
用于 UAB 回旋加速器设施的 Synthra MeIPlus 研究,具有 HCN/CO 选项和 Radchrom Plus
- 批准号:
10416828 - 财政年份:2022
- 资助金额:
$ 84.96万 - 项目类别:
Observation of cyclotron resonance in twisted bilayer graphene
扭曲双层石墨烯中回旋共振的观察
- 批准号:
21K20345 - 财政年份:2021
- 资助金额:
$ 84.96万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Developments for muon acceleration with cyclotron resonance
回旋共振 μ 子加速的进展
- 批准号:
21K18630 - 财政年份:2021
- 资助金额:
$ 84.96万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of a high-efficiency and high-intensity accelerator with the cyclotron resonance
高效、高强度回旋共振加速器的研制
- 批准号:
21K12537 - 财政年份:2021
- 资助金额:
$ 84.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collision Cross Section Measurements Using Fourier Transform Ion Cyclotron Resonance Techniques
使用傅里叶变换离子回旋共振技术进行碰撞截面测量
- 批准号:
1904838 - 财政年份:2019
- 资助金额:
$ 84.96万 - 项目类别:
Continuing Grant
New South Wales molecular analysis platform: Fourier transform ion cyclotron resonance mass spectrometer and CHN&S analyser
新南威尔士州分子分析平台:傅里叶变换离子回旋共振质谱仪和CHN
- 批准号:
LE180100050 - 财政年份:2018
- 资助金额:
$ 84.96万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Study of electron cyclotron resonance heating in over-dense plasmas with direct oblique launching from the high field side
高场侧直接斜发射过密等离子体电子回旋共振加热研究
- 批准号:
18K03590 - 财政年份:2018
- 资助金额:
$ 84.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
MRI: Acquisition of a Ultra-High Resolution Fourier Transform Ion Cyclotron Resonance (FTICR) Mass Spectrometer for the Georgia Institute of Technology Core Facilities
MRI:为佐治亚理工学院核心设施购置超高分辨率傅里叶变换离子回旋共振 (FTICR) 质谱仪
- 批准号:
1726528 - 财政年份:2017
- 资助金额:
$ 84.96万 - 项目类别:
Standard Grant
Cyclotron resonance study on the ion-gel-gated bilayer graphene
离子凝胶门控双层石墨烯的回旋共振研究
- 批准号:
16K05422 - 财政年份:2016
- 资助金额:
$ 84.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modeling Ion Extraction from First Toroidal Electron-Cyclotron-Resonance Ion Source
模拟第一环形电子回旋共振离子源的离子提取
- 批准号:
1632802 - 财政年份:2016
- 资助金额:
$ 84.96万 - 项目类别:
Standard Grant