EAGER: An Open Data Sharing Platform for Substance Use Disorders
EAGER:药物使用障碍的开放数据共享平台
基本信息
- 批准号:1945764
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project promotes the progress of data science to address the opioid overdose crisis currently ravaging communities across the nation, as well as to address substance use disorders more broadly. Numerous local, state, and federal efforts are underway to collect data relevant to substance use epidemiology, the availability of services, and response strategies. The challenge is that though there is a large volume of diverse and increasingly public data sources (e.g., national epidemiology surveys, mortality records, prescription drug monitoring, housing, health claims), these data sources are often fragmented, siloed in isolated portals, restricted by data-sharing agreements, and are difficult to use as there are no uniform standards for data collection or dissemination. The strategies necessary for linking these data to generate meaningful, actionable knowledge that is easily accessible for different stakeholder communities have not been developed. This project will develop and disseminate an open platform that will extract and integrate relevant data and provide toolkits that will enable stakeholder groups to take timely, appropriate action to manage substance use and other health and social challenges in their communities. To achieve this objective, the project brings together an interdisciplinary team from academia, industry, and government, with expertise in engineering, physical and social science disciplines to accomplish three tasks: 1) The team will create an open data sharing environment based at George Mason University. 2) The team will develop and test a data extraction and integration layer that will aggregate data appropriately to comply with confidentiality constraints from data stewards of proprietary data sets. The data integration will enable multiple disparate datasets to be linked at multiple geographical scales using de-identified profiles. 3) The team will work with domain experts and community stakeholders to develop, deploy, and refine data-driven analytics methods and toolkits for use cases to answer pressing community needs. The project will result in an open data framework with the potential to transform the current status quo of a crisis-driven acute system of care for substance abuse to data-driven pre-emptive, precision-targeted system of care. The open data framework has the potential to enable communities and government agencies to improve policies and practices through improved identification of relevant factors, prediction, targeting and coordination of resources, interventions and evaluation for managing substance use disorders.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目促进了数据科学的进步,以解决目前肆虐全国各地社区的阿片类药物过量危机,以及更广泛地解决物质使用障碍。许多地方、州和联邦正在努力收集与物质使用流行病学、服务可用性和应对策略相关的数据。挑战在于,尽管存在大量多样化且日益公开的数据源(例如,这些数据来源往往是零散的,孤立地存在于孤立的门户网站中,受到数据共享协议的限制,而且由于没有统一的数据收集或传播标准而难以使用。尚未制定必要的战略,将这些数据联系起来,以产生有意义的、可采取行动的知识,使不同的利益攸关方群体能够容易地获得这些知识。该项目将开发和传播一个开放平台,提取和整合相关数据,并提供工具包,使利益攸关方群体能够及时采取适当行动,管理其社区的药物使用和其他健康和社会挑战。为了实现这一目标,该项目汇集了来自学术界,工业界和政府的跨学科团队,具有工程,物理和社会科学学科的专业知识,以完成三项任务:1)该团队将在乔治梅森大学创建一个开放的数据共享环境。2)该小组将开发和测试一个数据提取和集成层,该层将适当地聚合数据,以遵守专有数据集数据管理员的保密限制。数据整合将使多个完全不同的数据集能够使用去识别的概况在多个地理尺度上联系起来。3)该团队将与领域专家和社区利益相关者合作,开发、部署和完善数据驱动的分析方法和工具包,以满足迫切的社区需求。该项目将产生一个开放的数据框架,有可能将目前由危机驱动的药物滥用急性护理系统的现状转变为由数据驱动的先发制人、精确定位的护理系统。开放式数据框架有潜力使社区和政府机构能够通过改进相关因素的识别、预测、目标定位和资源协调、干预和评估来改善政策和实践,以管理物质使用障碍。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Siddhartha Sikdar其他文献
Relationship Between Interhemispheric Cerebral Perfusion Delay and Carotid Artery Stenosis
- DOI:
10.1016/j.jvs.2019.06.047 - 发表时间:
2019-08-01 - 期刊:
- 影响因子:
- 作者:
Brajesh K. Lal;Amir A. Khan;Jigar Patel;Matthew Chrencik;Anthony Laila;John Y. Yokemick;John D. Sorkin;Siddhartha Sikdar - 通讯作者:
Siddhartha Sikdar
Ultrasonic interrogation of tissue vibrations in arterial and organ injuries: Preliminary <em>in vivo</em> results
- DOI:
10.1016/j.ultrasmedbio.2006.05.002 - 发表时间:
2006-08-01 - 期刊:
- 影响因子:
- 作者:
Siddhartha Sikdar;Kirk W. Beach;Marla Paun;Shahram Vaezy;Yongmin Kim - 通讯作者:
Yongmin Kim
Ultrasound–Based Muscle Activity Sensing for Intuitive Proportional Control in Upper Extremity Amputees
- DOI:
10.1016/j.apmr.2018.07.297 - 发表时间:
2018-10-01 - 期刊:
- 影响因子:
- 作者:
Biswarup Mukherjee;Ananya S. Dhawan;Shriniwas Patwardhan;Joseph Majdi;Rahsaan J. Holley;Wilsaan M. Joiner;Michelle Harris-Love;Siddhartha Sikdar - 通讯作者:
Siddhartha Sikdar
Computed tomography angiographic biomarkers help identify vulnerable carotid artery plaque
- DOI:
10.1016/j.jvs.2021.10.056 - 发表时间:
2022-04-01 - 期刊:
- 影响因子:
- 作者:
Brajesh K. Lal;Amir A. Khan;Vikram S. Kashyap;Matthew T. Chrencik;Ajay Gupta;Alexander H. King;Jigar B. Patel;Janice Martinez-Delcid;Domingo Uceda;Sarasi Desikan;Siddhartha Sikdar;John D. Sorkin;Andrew Buckler - 通讯作者:
Andrew Buckler
Poster 147: Novel Use of Ultrasound Imaging to Investigate Myofascial Trigger Points and the Effects of Dry Needling: A Case Series
- DOI:
10.1016/j.pmrj.2009.08.167 - 发表时间:
2009-09-01 - 期刊:
- 影响因子:
- 作者:
Ru-Huey Yen;Jerome Danoff;Tadesse M. Gebreab;Naomi Lynn H. Gerber;Jay P. Shah;Siddhartha Sikdar - 通讯作者:
Siddhartha Sikdar
Siddhartha Sikdar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Siddhartha Sikdar', 18)}}的其他基金
I-Corps: Translation Potential of Simultaneous Musculoskeletal Assessment with Real-Time Ultrasound
I-Corps:实时超声同步肌肉骨骼评估的转化潜力
- 批准号:
2413735 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
NRT-HDR: Transdisciplinary Graduate Training Program in Data-Driven Adaptive Systems of Brain-Body Interactions
NRT-HDR:数据驱动的脑体交互自适应系统跨学科研究生培训计划
- 批准号:
1922598 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Planning Grant: Engineering Research Center for Technology-Empowered Communities of Recovery (TECOR)
规划补助金:技术赋能康复社区工程研究中心(TECOR)
- 批准号:
1840399 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Closed-loop Hybrid Exoskeleton utilizing Wearable Ultrasound Imaging Sensors for Measuring Fatigue
CPS:协同:协作研究:利用可穿戴超声成像传感器测量疲劳的闭环混合外骨骼
- 批准号:
1646204 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CPS: Synergy: A Novel Biomechatronic Interface Based on Wearable Dynamic Imaging Sensors
CPS:Synergy:基于可穿戴动态成像传感器的新型生物机电接口
- 批准号:
1329829 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: An Integrated Systems Approach to Understanding Complex Muscle Disorders
职业:理解复杂肌肉疾病的综合系统方法
- 批准号:
0953652 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
精子发生中mRNA下游开放阅读框(downstream Open Reading Frame,dORF)的功能研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于升阶谱方法和Open CASCADE的高阶网格自动生成技术研究
- 批准号:11972004
- 批准年份:2019
- 资助金额:62.0 万元
- 项目类别:面上项目
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
变分与拓扑方法和Schrodinger方程中的Open 问题
- 批准号:10871109
- 批准年份:2008
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
NEMO - Net zero events using multiple open data sources
NEMO - 使用多个开放数据源的净零事件
- 批准号:
10114096 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
SME Support
LTREB: Integrating real-time open data pipelines and forecasting to quantify ecosystem predictability at day to decadal scales
LTREB:集成实时开放数据管道和预测,以量化每日到十年尺度的生态系统可预测性
- 批准号:
2327030 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Fair and modular blockchain data infrastructure for open science and society (FairOnChain)
用于开放科学和社会的公平和模块化区块链数据基础设施(FairOnChain)
- 批准号:
EP/Y036247/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
Collaborative Research: GEO OSE Track 2: QGreenland-Net: Open, connected data infrastructure for Greenland-focused geoscience, and beyond
合作研究:GEO OSE 第 2 轨:QGreenland-Net:面向格陵兰岛地球科学及其他领域的开放、互联数据基础设施
- 批准号:
2324766 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Governing Industrial Data Ecosystems: Open Innovation in a Digital Economy
治理工业数据生态系统:数字经济中的开放创新
- 批准号:
DE240101364 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Discovery Early Career Researcher Award
Collaborative Research: GEO OSE Track 2: QGreenland-Net: Open, connected data infrastructure for Greenland-focused geoscience, and beyond
合作研究:GEO OSE 第 2 轨:QGreenland-Net:面向格陵兰岛地球科学及其他领域的开放、互联数据基础设施
- 批准号:
2324765 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
The Open Data Exchange Ecosystem in Proteomics: Evolving its Utility
蛋白质组学中的开放数据交换生态系统:不断发展其实用性
- 批准号:
EP/Y035984/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
CC* Data Storage: Cost-effective Attached Storage for High throughput computing using Homo- geneous IT (CASH HIT) supporting Penn State Science, the Open Science Grid and LIGO
CC* 数据存储:使用同质 IT (CASH HIT) 实现高吞吐量计算的经济高效附加存储,支持宾夕法尼亚州立大学科学学院、开放科学网格和 LIGO
- 批准号:
2346596 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
A Process-Based Framework for Open Innovation with Social Media Data
基于流程的社交媒体数据开放式创新框架
- 批准号:
DP230102657 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Discovery Projects














{{item.name}}会员




