The Global Circuits Paradox
全球电路悖论
基本信息
- 批准号:1945871
- 负责人:
- 金额:$ 80.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The long-term sustainability of Earth calls increasingly for a global perspective. This research involving simultaneous measurements of the two global circuits is decidedly global in nature. The two globally invariant (at any given time) quantities under study are (1) the ionospheric potential, representing the totality of electrified weather and (2) Schumann resonance activity, the global totality of lightning, both of which are experienced by all of humanity. Thunderstorms and lightning are both threats to all human activity, and so deserve to be monitored. The monitoring of the Earth’s Schumann resonances lends itself naturally to international cooperation. Both global electrical circuits have been shown to be responsive to surface air temperature on a variety of time scales, with much relevance on longer time scales to fossil fuel consumption and global warming given these natural frameworks for global monitoring. The observed trends will be of value to policy makers. The interest in the variable source strengths of continental “chimneys” (continental scale regions of strong convection) is also directly linked to the large-scale circulation of the atmosphere, and hence global weather patterns are likely linked with the global circuit variations under investigation here. Thunderstorms are important players in global warming because they produce large areas of cirrus cloud that affect incoming solar radiation, and also redistribute water vapor from the planetary boundary layer to the upper troposphere where it is radiatively more important. A critical aspect of global heat balance also lies with tropospheric aerosol and this study is the first to take on the monitoring of cloud condensation nuclei (CCN) on the spatial scale of the continental chimneys.A large body of evidence, some of it a century old, supports the view that the ionospheric potential characterization of the DC (“Direct Current”) global electrical circuit is maximum over the diurnal cycle in Universal Time (UT) when the American continent is electrically predominant near 19-20 UT. In contrast, a comparable body of evidence shows that global lightning activity, and the AC (“Alternating Current”) global circuit (aka, Schumann resonances) is maximum when Africa is electrically predominant (14-15 UT). This apparent contradiction is referred to hereafter as the “global circuits paradox”. This research is aimed at a resolution of this paradox. The thesis of this investigation is that the “global circuits paradox” has long gone unresolved because essential quantities have not been examined in comparisons of contributions from America and Africa, the dominant chimneys driving the global circuits. Thermodynamic contrasts have previously been examined and fall short in resolving the paradox. Electrified shower clouds were identified as possible fundamental sources additional to thunderstorms for the DC global circuit by C.T.R. Wilson, but careful comparisons between America and Africa are only recently possible with satellite and lightning observations. Increased pollution in the form of CCN have been shown to increase lightning flash rate in thunderstorms in both observations and models, but only recently have CCN been accessible on the continental scales relevant to the global circuits. In this study, coordinated measurements of the DC and AC global circuits when Africa and America are most prominent, together with electrified shower clouds and CCN (and with appropriate controls on thermodynamic quantities) to resolve the global circuits paradox.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地球的长期可持续性越来越需要全球视角。 这项研究涉及两个全球电路的同时测量,在本质上是决定性的全球性。研究中的两个全球不变(在任何给定时间)量是(1)电离层电位,代表带电天气的总量,(2)舒曼共振活动,全球闪电的总量,这两个量都是全人类所经历的。雷暴和闪电都是对所有人类活动的威胁,因此值得监测。对地球舒曼共振的监测自然有助于国际合作。 这两个全球电路已被证明是在各种时间尺度上对地表空气温度的响应,在更长的时间尺度上与化石燃料消耗和全球变暖有很大的相关性,因为这些天然的全球监测框架。 观察到的趋势将对决策者有价值。对大陆“烟囱”(大陆尺度强对流区域)的可变源强度的兴趣也与大气的大尺度环流直接相关,因此全球天气模式可能与本文研究的全球环流变化有关。雷暴是全球变暖的重要因素,因为它们产生大面积的卷云,影响入射的太阳辐射,并将水蒸气从行星边界层重新分配到对流层上层,在那里它的辐射更重要。 全球热平衡的一个关键方面也在于对流层气溶胶,这项研究是第一次在大陆烟囱的空间尺度上监测云凝结核(CCN)。大量的证据,其中一些已有世纪的历史,支持这样的观点,即直流电的电离层电位特性当美洲大陆在19-20 UT附近占电优势时,直流电(“直流电”)全球电路在世界时(UT)的昼夜周期内最大。相比之下,一个可比较的证据表明,全球闪电活动和AC(“交流电”)全球电路(又名舒曼共振)在非洲占主导地位时(14-15 UT)最大。这一明显的矛盾在下文中被称为“全局电路悖论”。本研究旨在解决这一悖论。 本研究的主题是,“全球电路悖论”长期以来一直没有得到解决,因为在比较美国和非洲的贡献时没有检查基本数量,而美国和非洲是驱动全球电路的主要烟囱。热力学对比以前已经被检查过,并没有解决这个悖论。带电的阵雨云被确定为除了雷暴之外的直流全球电路的可能的基本来源。威尔逊说,但美洲和非洲之间的仔细比较只是最近才有可能通过卫星和闪电观测。在观测和模型中,CCN形式的污染增加已被证明会增加雷暴中的闪电率,但直到最近才在与全球电路相关的大陆尺度上获得CCN。在这项研究中,协调测量的直流和交流全球电路时,非洲和美洲是最突出的,与带电的阵雨云和CCN(并与适当的控制热力学量),以解决全球电路paradox.This奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Earle Williams其他文献
Determining hematite content from NUV/Vis/NIR spectra: Limits of detection
从 NUV/Vis/NIR 光谱测定赤铁矿含量:检测限
- DOI:
10.2138/am-2014-4878 - 发表时间:
2014-11 - 期刊:
- 影响因子:3.1
- 作者:
Junfeng Ji;Devon Renock;Bobby C. Deaton;Earle Williams - 通讯作者:
Earle Williams
Anomalous diurnal variation of atmospheric potential gradient and air‐Earth current density observed at Maitri, Antarctica
南极洲迈特里观测到的大气电位梯度和地空电流密度日变化异常
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
K. Jeeva;S. Gurubaran;Earle Williams;A. K. Kamra;A. K. Sinha;Anirban Guha;C. Selvaraj;K. U. Nair;A. Dhar - 通讯作者:
A. Dhar
A closer look at lightning reveals needle-like structures
仔细观察闪电会发现针状结构
- DOI:
10.1038/d41586-019-01178-7 - 发表时间:
2019-04-17 - 期刊:
- 影响因子:48.500
- 作者:
Earle Williams;Joan Montanyà - 通讯作者:
Joan Montanyà
Earle Williams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Earle Williams', 18)}}的其他基金
Collaborative Research: Lightning Studies in a Polluted Atmosphere
合作研究:污染大气中的闪电研究
- 批准号:
1523305 - 财政年份:2015
- 资助金额:
$ 80.58万 - 项目类别:
Continuing Grant
Merging of Observations and Models for the Earth's Schumann Resonances
地球舒曼共振观测与模型的合并
- 批准号:
0842751 - 财政年份:2009
- 资助金额:
$ 80.58万 - 项目类别:
Standard Grant
Collaborative Research: West African Mesoscale Convective Systems and Their Interactions with the Synoptic Environment
合作研究:西非中尺度对流系统及其与天气环境的相互作用
- 批准号:
0734806 - 财政年份:2008
- 资助金额:
$ 80.58万 - 项目类别:
Continuing Grant
Wideband Analysis of Sources and Structure of the Earth-Ionosphere Waveguide
地球-电离层波导的来源和结构的宽带分析
- 批准号:
0337298 - 财政年份:2003
- 资助金额:
$ 80.58万 - 项目类别:
Continuing Grant
A Study of the African 'Chimney' Region with Schumann Resonance Methods
用舒曼共振方法研究非洲“烟囱”地区
- 批准号:
0003346 - 财政年份:2000
- 资助金额:
$ 80.58万 - 项目类别:
Continuing Grant
Global Studies with Dual Schumann Resonance Methods
使用双舒曼共振方法进行全球研究
- 批准号:
9633766 - 财政年份:1997
- 资助金额:
$ 80.58万 - 项目类别:
Continuing Grant
Schumann Resonance Measurements for Global Change
全球变化的舒曼共振测量
- 批准号:
9218161 - 财政年份:1993
- 资助金额:
$ 80.58万 - 项目类别:
Continuing Grant
Electrification and Energetics of Deep Convection Near Darwin, Australia
澳大利亚达尔文附近深对流的电气化和能量
- 批准号:
9022038 - 财政年份:1991
- 资助金额:
$ 80.58万 - 项目类别:
Continuing Grant
Characteristics of Cloud-to-Ground Lightning in the Contiguous United States
美国本土云地闪电的特征
- 批准号:
9119605 - 财政年份:1991
- 资助金额:
$ 80.58万 - 项目类别:
Standard Grant
Studies of Dynamics and Electrification of Deep Convection and Mesoscale Cloud Clusters Near Darwin, Australia
澳大利亚达尔文附近深对流和中尺度云团的动力学和电气化研究
- 批准号:
8818694 - 财政年份:1988
- 资助金额:
$ 80.58万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Lower Bounds for Shallow Circuits
职业生涯:浅层电路的下限
- 批准号:
2338730 - 财政年份:2024
- 资助金额:
$ 80.58万 - 项目类别:
Continuing Grant
PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
- 批准号:
2423820 - 财政年份:2024
- 资助金额:
$ 80.58万 - 项目类别:
Standard Grant
Learning how we learn: linking inhibitory brain circuits to motor learning
了解我们如何学习:将抑制性大脑回路与运动学习联系起来
- 批准号:
DE240100201 - 财政年份:2024
- 资助金额:
$ 80.58万 - 项目类别:
Discovery Early Career Researcher Award
Investigating heterojunction-based organic phototransistors and circuits using layer-by-layer coated highly-oriented polymer semiconductors
使用逐层涂覆的高取向聚合物半导体研究基于异质结的有机光电晶体管和电路
- 批准号:
24K17743 - 财政年份:2024
- 资助金额:
$ 80.58万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Immunoregulatory functions of appetite controlling brain circuits
食欲控制脑回路的免疫调节功能
- 批准号:
BB/Y005694/1 - 财政年份:2024
- 资助金额:
$ 80.58万 - 项目类别:
Research Grant
Silencing the noise in quantum circuits by a Quantum fluid Bath - SQuBa
通过量子流体浴消除量子电路中的噪声 - SQuBa
- 批准号:
EP/Y022289/1 - 财政年份:2024
- 资助金额:
$ 80.58万 - 项目类别:
Research Grant
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
- 批准号:
EP/Z000688/1 - 财政年份:2024
- 资助金额:
$ 80.58万 - 项目类别:
Research Grant
Functional implications of focal white matter lesions on neuronal circuits
局灶性白质病变对神经元回路的功能影响
- 批准号:
MR/Y014537/1 - 财政年份:2024
- 资助金额:
$ 80.58万 - 项目类别:
Research Grant
Mechanisms of Motivation: The Role of Cortical-Basal Ganglia-Dopamine Circuits in Reward Pursuit and Apathy
动机机制:皮质-基底神经节-多巴胺回路在奖励追求和冷漠中的作用
- 批准号:
MR/X022080/1 - 财政年份:2024
- 资助金额:
$ 80.58万 - 项目类别:
Research Grant
EPSRC-SFI: Supercoiling-driven gene control in synthetic DNA circuits
EPSRC-SFI:合成 DNA 电路中超螺旋驱动的基因控制
- 批准号:
EP/V027395/2 - 财政年份:2024
- 资助金额:
$ 80.58万 - 项目类别:
Research Grant