Implementing Effective Data Practices

实施有效的数据实践

基本信息

项目摘要

The open science movement is gaining momentum across the academic landscape. Since the National Academies of Science, Engineering, and Medicine (NAS) published the Open Science by Design: Realizing a Vision for 21st Century Research report in 2018, many institutions, organizations, and faculty have begun assessing their current practices and infrastructure to support a more open research ecosystem. To fully realize the vision for open science and scholarship, stakeholders need to adopt key infrastructure, standards, and practices necessary to facilitate responsible data practices. Drawing inspiration from sources such as the May 2019 NSF Dear Colleague Letter (DCL) the organizers propose an expert convening to discuss persistent identifiers (PIDs) for datasets and creating machine readable data management plans (DMPs). The conference is organized by California Digital Library (CDL) and Association of Research Libraries (ARL), in partnership with the Association of American Universities (AAU) and the Association of Public and Land-grant Universities (APLU). The conference will engage approximately 40 experts in a multi-day workshop in Washington DC winter of 2019 with the goal to identify and determine:1. What barriers remain to implementing the widely recognized good practices in the NSF DCL2. What kinds of model workflows might address those barriers, while minimizing faculty burden3. What implementation of the NSF DCL means for institutional data governance (e.g. sharing DMPs across campus units, between institutions, and publicly)4. Findings to bring back to policymakers, funding agencies, and other similar institutions5. Recommendations of effective practices for grants offices, including guidance to their researchersThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
开放科学运动正在整个学术版图中获得势头。自美国国家科学、工程和医学研究院(NAS)于2018年发布《开放科学:实现21世纪研究愿景》报告以来,许多机构、组织和教职员工已经开始评估他们目前的做法和基础设施,以支持一个更开放的研究生态系统。为了充分实现开放科学和学术的愿景,利益相关者需要采用必要的关键基础设施、标准和实践,以促进负责任的数据实践。组织者从2019年5月NSF亲爱的同事信(DCL)等来源中获得灵感,建议召开一次专家会议,讨论数据集的永久标识符(PID),并创建机器可读的数据管理计划(DMP)。这次会议是由加州数字图书馆(CDL)和研究图书馆协会(ARL)与美国大学协会(AAU)和公共和土地赠与大学协会(APLU)合作举办的。这次会议将邀请大约40名专家参加2019年冬季在华盛顿特区举行的为期数天的研讨会,目的是确定和确定:1.在NSF DCL2中实施广泛认可的良好做法仍然存在哪些障碍。什么样的工作流程模式可以解决这些障碍,同时将教师负担降至最低3。NSF DCL的实施对机构数据治理意味着什么(例如,跨校园单位、机构之间和公共部门共享DMP)4.将结果带回给政策制定者、资助机构和其他类似机构5。对资助机构的有效做法的建议,包括对其研究人员的指导该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guenter Waibel其他文献

Guenter Waibel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guenter Waibel', 18)}}的其他基金

Connecting Researchers in Sharing and Re-Use of Research Data and Software
连接研究人员共享和重复使用研究数据和软件
  • 批准号:
    2031647
  • 财政年份:
    2020
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Standard Grant
Community Meeting on Scalable Data Publication Infrastructure
可扩展数据发布基础设施社区会议
  • 批准号:
    1839032
  • 财政年份:
    2018
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Standard Grant
EAGER: DMP Roadmap: Making Data Management Plans Actionable
EAGER:DMP 路线图:使数据管理计划切实可行
  • 批准号:
    1745675
  • 财政年份:
    2017
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Standard Grant

相似海外基金

Efficient and effective methods for classifying massive time series data
海量时间序列数据高效有效的分类方法
  • 批准号:
    DP240100048
  • 财政年份:
    2024
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Discovery Projects
CC* Data Storage: Cost-effective Attached Storage for High throughput computing using Homo- geneous IT (CASH HIT) supporting Penn State Science, the Open Science Grid and LIGO
CC* 数据存储:使用同质 IT (CASH HIT) 实现高吞吐量计算的经济高效附加存储,支持宾夕法尼亚州立大学科学学院、开放科学网格和 LIGO
  • 批准号:
    2346596
  • 财政年份:
    2024
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Standard Grant
ATD: Efficient and Effective Algorithms for Detection of Anomalies in High-dimensional Spatiotemporal Data with Large Amounts of Missing Data
ATD:高效且有效的高维时空数据异常检测算法
  • 批准号:
    2318925
  • 财政年份:
    2023
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Standard Grant
Unravel machine learning blackboxes -- A general, effective and performance-guaranteed statistical framework for complex and irregular inference problems in data science
揭开机器学习黑匣子——针对数据科学中复杂和不规则推理问题的通用、有效和性能有保证的统计框架
  • 批准号:
    2311064
  • 财政年份:
    2023
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Standard Grant
CAREER: A Highly Effective, Usable, Performant, Scalable Data Reduction Framework for HPC Systems and Applications
职业:适用于 HPC 系统和应用程序的高效、可用、高性能、可扩展的数据缩减框架
  • 批准号:
    2232120
  • 财政年份:
    2023
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Using models and historical data to guide effective monitoring and enhance understanding of deep ocean oxygen variability
合作研究:利用模型和历史数据指导有效监测并增强对深海氧气变化的理解
  • 批准号:
    2242742
  • 财政年份:
    2023
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: Dual-track Role-based Learning for Cybersecurity Analysts and Engineers for Effective Defense Operation with Data Analytics
协作研究:SaTC:EDU:网络安全分析师和工程师基于角色的双轨学习,通过数据分析实现有效的防御操作
  • 批准号:
    2228002
  • 财政年份:
    2023
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: Dual-track Role-based Learning for Cybersecurity Analysts and Engineers for Effective Defense Operation with Data Analytics
协作研究:SaTC:EDU:网络安全分析师和工程师基于角色的双轨学习,通过数据分析实现有效的防御操作
  • 批准号:
    2228001
  • 财政年份:
    2023
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Using models and historical data to guide effective monitoring and enhance understanding of deep ocean oxygen variability
合作研究:利用模型和历史数据指导有效监测并增强对深海氧气变化的理解
  • 批准号:
    2242741
  • 财政年份:
    2023
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
  • 批准号:
    2310262
  • 财政年份:
    2023
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了