COMPCOG: Intuitive Physics without Intuition or Physics: Leveraging Deep Neural Networks to Model Human Physical Reasoning

COMPCOG:没有直觉或物理的直觉物理:利用深度神经网络模拟人类物理推理

基本信息

  • 批准号:
    1946308
  • 负责人:
  • 金额:
    $ 55.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

The broad purpose of the proposed research is to leverage recent advances in artificial intelligence (AI) and deep learning to gain insight into the inner workings of human cognition. While the nature of human perception and cognition can only be inferred from behavior, deep neural networks that emulate human behavior offer a unique opportunity to scrutinize the inner workings of the system and potentially understand how and why the system works the way it does (and, thus how and why the human system works the way it does). While cognitive science has always employed formal computational models, for the first time the cognitive abilities of artificial agents has begun to rival or exceed those of humans in several domains, providing the opportunity to formally understand complex human behavior using these models. Specifically, in the proposed research the investigators will use deep neural network models to better understand intuitive physical reasoning — our ability to understand the behavior of objects in our environment. For example, at a glance, people can judge whether a stack of plates is about to fall, or whether it’s stable. This type of intuitive physical reasoning is a fundamental aspect of human cognition which underlies our everyday reasoning about objects in the world, but likely also supports formal education in the physical sciences (e.g., learning Newtonian physics). Thus, the general purpose of the proposed research is to leverage recent advances in deep learning to develop a rich basic level understanding of human intuitive physical reasoning, which ultimately has the potential to impact formal STEM education.In the proposed work, the investigators will combine tools from cognitive science (ideal observer analyses), with tools from artificial intelligence (deep, convolutional neural networks), to test a novel psychological theory (intuitive physical reasoning as extrapolation in shape space) to gain insight into a core aspect of human cognition (intuitive physical reasoning). This work involves testing human participants to obtain human performance benchmarks on a variety of intuitive physical judgments, then training deep neural network models to perform the same tasks, in some cases constrained to behave as ideal observers (systems that perform the optimal computation to perform the task). By examining similarities and differences between humans and these deep neural network models, and scrutinizing the inner workings of models that perform the task with human-level accuracy, the investigators will develop neural network based models of human intuitive physical reasoning. As such, this work presents an interdisciplinary integration between cognitive science and artificial intelligence, with the potential to impact basic cognitive theory and its applications to formal STEM education, and to increase the synergy between the fields of machine vision, artificial intelligence, and autonomous agents that aim to emulate human intelligence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
拟议研究的广泛目的是利用人工智能(AI)和深度学习的最新进展来洞察人类认知的内部工作原理。虽然人类感知和认知的本质只能从行为中推断,但模拟人类行为的深层神经网络提供了一个独特的机会,可以仔细检查系统的内部工作原理,并潜在地理解系统如何和为什么以这种方式工作(以及人类系统如何和为什么以这种方式工作)。虽然认知科学一直使用正式的计算模型,但人工代理的认知能力首次开始在几个领域与人类匹敌或超过人类,从而为使用这些模型正式理解复杂的人类行为提供了机会。具体地说,在这项拟议的研究中,研究人员将使用深度神经网络模型来更好地理解直观的物理推理--我们理解环境中对象行为的能力。例如,人们一眼就能判断一叠盘子是否即将倒下,或者它是否稳定。这种类型的直观物理推理是人类认知的一个基本方面,它是我们日常对世界上物体的推理的基础,但也可能支持物理科学的正规教育(例如,学习牛顿物理学)。因此,拟议研究的总体目的是利用深度学习的最新进展来发展对人类直觉物理推理的丰富基础水平的理解,这最终可能影响正规的STEM教育。在拟议的工作中,研究人员将结合认知科学的工具(理想观察者分析)和人工智能的工具(深层卷积神经网络)来测试一种新的心理学理论(直观物理推理作为形状空间的外推),以洞察人类认知的核心方面(直觉物理推理)。这项工作包括测试人类参与者以获得各种直观物理判断的人类表现基准,然后训练深度神经网络模型执行相同的任务,在某些情况下被约束为理想的观察者(执行执行任务的最佳计算的系统)。通过研究人类和这些深层神经网络模型之间的异同,并仔细研究以人类水平的精度执行任务的模型的内部工作原理,研究人员将开发基于神经网络的人类直觉物理推理模型。因此,这项工作体现了认知科学和人工智能之间的跨学科整合,有可能影响基本认知理论及其在正规STEM教育中的应用,并增加机器视觉、人工智能和旨在模拟人类智能的自主代理之间的协同。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

George Alvarez其他文献

Renal replacement therapy: a practical update
STRONGYLOIDASIS COMPLICATING ALLERGIC BRONCHOPULOMONARY ASPERGILLOSIS IN AN IMMUNOSUPPRESSED PATIENT WITH REFRACTORY ASTHMA
  • DOI:
    10.1016/j.chest.2019.08.2113
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Anthony Chahin;Jovan Gayle;George Alvarez;Zaid Yaqoob;Israel Acosta Sanchez;Vanthanh Ly
  • 通讯作者:
    Vanthanh Ly
MOUNIER-KUHN SYNDROME: A RARE PULMONARY MASQUERADER
  • DOI:
    10.1016/j.chest.2020.08.1470
  • 发表时间:
    2020-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Manuel Carrazana;George Alvarez;Muhammad Ijlal Khan;Nabeel Azzawi;Jose Urdaneta Jaimes
  • 通讯作者:
    Jose Urdaneta Jaimes
BRONCHOGENIC CYST: A TALE OF THE THIRD RECURRENCE
  • DOI:
    10.1016/j.chest.2020.08.117
  • 发表时间:
    2020-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Manuel Carrazana;George Alvarez;Hesham Afify;Loui Abdelghani;Maria Wallis-Crespo
  • 通讯作者:
    Maria Wallis-Crespo
A PELVIC CAUSE OF EPISODIC DYSPNEA
  • DOI:
    10.1016/j.chest.2019.08.326
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    George Alvarez;Patricia Guzman Rojas;Israel Acosta Sanchez;Priya Gopalan;Natarajan Rajagopalan
  • 通讯作者:
    Natarajan Rajagopalan

George Alvarez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('George Alvarez', 18)}}的其他基金

CAREER: Flexible Resource Allocation and Efficient Coding in Human Vision
职业:人类视觉中的灵活资源分配和高效编码
  • 批准号:
    0953730
  • 财政年份:
    2010
  • 资助金额:
    $ 55.38万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mental Abacus Education and Spatial Representations of Number
合作研究:珠心算教育与数字的空间表示
  • 批准号:
    0910070
  • 财政年份:
    2009
  • 资助金额:
    $ 55.38万
  • 项目类别:
    Standard Grant

相似海外基金

The Intuitive Social Dynamics of Authentic Language Teaching
真实语言教学的直观社会动力
  • 批准号:
    24K04061
  • 财政年份:
    2024
  • 资助金额:
    $ 55.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SensorGROW - an intuitive, cost effective and scalable precision growing platform, powered by a network of unified agri-sensor nodes
SensorGROW - 直观、经济高效且可扩展的精准种植平台,由统一农业传感器节点网络提供支持
  • 批准号:
    10095990
  • 财政年份:
    2024
  • 资助金额:
    $ 55.38万
  • 项目类别:
    Collaborative R&D
Remote and Autonomous Integrated Service Robot System Based on Intuitive Human Sensation and Foundational Model
基于人类直觉和基础模型的远程自主综合服务机器人系统
  • 批准号:
    23K20003
  • 财政年份:
    2023
  • 资助金额:
    $ 55.38万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
An Ear to the Sky: Intuitive Exploration & Discovery in Astronomical Data using Sonification
倾听天空:直觉探索
  • 批准号:
    ST/X004651/1
  • 财政年份:
    2023
  • 资助金额:
    $ 55.38万
  • 项目类别:
    Research Grant
CAREER: How Many Intuitive Physics Systems are There, and What Do They Mean for Physics Education
职业:有多少直观的物理系统,它们对物理教育意味着什么
  • 批准号:
    2238912
  • 财政年份:
    2023
  • 资助金额:
    $ 55.38万
  • 项目类别:
    Continuing Grant
Automating Creativity: Intuitive integration of industrial cobots for table-top cinematography
自动化创造力:用于桌面电影摄影的工业协作机器人的直观集成
  • 批准号:
    10071433
  • 财政年份:
    2023
  • 资助金额:
    $ 55.38万
  • 项目类别:
    Collaborative R&D
Intuitive, complete neural control of tablet computers for communication
对平板电脑进行直观、完整的神经控制以进行通信
  • 批准号:
    10775125
  • 财政年份:
    2023
  • 资助金额:
    $ 55.38万
  • 项目类别:
SBIR Phase II: Making Math Intuitive, Creative, and Social in Tile Farm Classroom
SBIR 第二阶段:在 Tile Farm 课堂上让数学变得直观、富有创意和社交
  • 批准号:
    2322118
  • 财政年份:
    2023
  • 资助金额:
    $ 55.38万
  • 项目类别:
    Cooperative Agreement
I-Corps: An Intuitive Design Platform for Sustainable Multifamily Residential Buildings
I-Corps:可持续多户住宅建筑的直观设计平台
  • 批准号:
    2230357
  • 财政年份:
    2022
  • 资助金额:
    $ 55.38万
  • 项目类别:
    Standard Grant
Smart capacitive force-proximity skin sensor with Tactile AI and adjustable spatial resolution and dynamic sensing range for safe and intuitive human-robot interaction
智能电容式力接近皮肤传感器,具有触觉 AI 和可调节空间分辨率和动态感应范围,可实现安全直观的人机交互
  • 批准号:
    22K04017
  • 财政年份:
    2022
  • 资助金额:
    $ 55.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了