The effect of rotational evolution on the surface and interior of the early Earth

自转演化对早期地球表面和内部的影响

基本信息

  • 批准号:
    1947614
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-03-01 至 2023-02-28
  • 项目状态:
    已结题

项目摘要

Among the unsolved mysteries of Earth’s history are the age of the first continental crust and whether processes akin to the modern plate tectonic cycle are required to form continental crust. The oldest preserved minerals found on Earth are zircons up to 4.4 billion years old, which is only a few tens of million years younger than the Earth itself. Some geochemists interpret these zircons as evidence that there was already, at that time, crust similar to continents, but it is very unclear how and whether plate tectonics could have started so early. In this work the investigators will explore an alternative series of processes that operated only in this early era of Earth history and determine whether these processes could have led to the formation of continental crust and could explain the zircon evidence. The process to be studied is rapid changes in the Earth’s rotation rate, or length of day. This is motivated by the most successful theories of the origin of the Moon, which all involve a giant impact, perhaps with a Mars-sized object, that left the Earth molten and rapidly spinning and ejected debris that condensed to form a very close-in Moon. It only takes about a million years for the outer shell of the Earth to freeze and become rigid, forming a crust and lithosphere (a crust that would be, at this stage, nothing like continents). It is well-understood that, over the next ten million years or so (and continuing at an ever-decreasing rate all the way to the present), the enormous tides raised by such a close moon cause a gravitational interaction that slows the Earth’s rotation and boosts the Moon to a higher orbit. What has not been studied in detail is the consequence of this for the shape of the Earth itself and for the deformation experienced by the rocky outer shell of the Earth as it changes shape. A rapidly spinning planet flattens significantly into a shape with a large equatorial bulge so that just after the Moon formed, the radius of the Earth through the equator may have been twice as large as that through the poles. As the length of day increases and the equatorial diameter decreases, this puts the entire equatorial region into a state of compressive stress that will thicken the lithosphere, driving possibly water-bearing material (that has interacted with the steam-rich early atmosphere) to depths where it undergoes another stage of melting, the products of which should resemble continental crust. In order to study these phenomena in detail, investigators will create a series of computer codes necessary to describe rapidly rotating planets and the melting and crystallization processes they experience. The team will document and release these codes to the scientific community for use in numerous other studies. They also intend to develop educational and outreach resources based on the unique and dramatic series of events that our planet experienced at its birth. This work will involve advanced scientific and professional training for a postdoctoral scholar as well as undergraduate research experiences.The numerical models that will be used to explore the consequences of rotational evolution on the early Earth include HERCULES, alphaMELTS, Perple_X, and custom advection-diffusion codes. HERCULES solves the hydrostatic equations of planetary structure in a frame that does not assume spherical symmetry or small perturbations thereto. It is able to accurately describe pressure, density, and gravity in a planet with arbitrarily fast rotation rate up to its stability limit (where angular acceleration at the equator exactly cancels gravity). HERCULES will be improved for this project to incorporate a wider range of equations of state. Extents of melting as a function of latitude and the composition and thickness of proto-crust will then be computed in the structures predicted by HERCULES using the pMELTS calibration, implemented in alphaMELTS for MATLAB or Python (tools developed with NSF geoinformatics support). The next stage is to move from statics to dynamics and calculate deformation rates and mechanisms using tectonophysics codes that incorporate elastic-plastic rheologies, brittle failure and viscous flow. Knowing the type of faults that are predicted and the amplitude of motion, the investigators can describe the pressure-temperature paths that protocrustal material will experience using advection-diffusion models. Finally, along those P-T paths Perplex_X pseudosections will be utilized to predict where felsic melts will form and whether the resulting crust will be buoyantly stable and likely to survive long enough to be eroded at the surface and create detrital zircons.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地球历史上未解之谜包括第一个大陆地壳的年龄以及是否需要类似于现代板块构造循环的过程来形成大陆地壳。地球上发现的最古老的矿物是锆石,年龄可达44亿年,比地球本身年轻数千万年。一些地球化学家将这些锆石解释为当时已经存在类似于大陆的地壳的证据,但目前还不清楚板块构造如何以及是否可以这么早开始。在这项工作中,研究人员将探索一系列仅在地球历史早期运作的替代过程,并确定这些过程是否可能导致大陆地壳的形成,并解释锆石的证据。要研究的过程是地球自转速率或一天长度的快速变化。这是由最成功的月球起源理论所激发的,这些理论都涉及巨大的撞击,也许是火星大小的物体,使地球熔化并迅速旋转,并喷射出碎片,这些碎片凝结形成一个非常接近的月球。只需要大约一百万年,地球的外壳就会冻结并变得坚硬,形成地壳和岩石圈(在这个阶段,地壳与大陆完全不同)。众所周知,在接下来的1000万年左右(并以不断下降的速度一直持续到现在),如此近的月球引起的巨大潮汐会导致引力相互作用,减缓地球的自转,并将月球推到更高的轨道。尚未详细研究的是这对地球本身形状的影响,以及地球岩石外壳在改变形状时所经历的变形。一个快速旋转的行星会显著地变成一个赤道上有一个巨大凸起的形状,这样在月球形成之后,地球通过赤道的半径可能是通过两极的半径的两倍。随着白昼的延长和赤道直径的减小,这使得整个赤道地区处于压应力状态,这将使岩石圈膨胀,将可能含有水的物质(与富含蒸汽的早期大气相互作用)推向深处,在那里它经历了另一个阶段的熔融,其产物应该类似于大陆地壳。为了详细研究这些现象,研究人员将创建一系列必要的计算机代码来描述快速旋转的行星及其经历的熔化和结晶过程。该团队将记录这些代码并将其发布给科学界,以供许多其他研究使用。他们还打算根据我们这个星球诞生时所经历的一系列独特而引人注目的事件,开发教育和外联资源。这项工作将涉及先进的科学和专业培训的博士后学者以及本科生的研究经验。数值模型,将被用来探索早期地球上的旋转演化的后果,包括HERCULES,alphaMELTS,Perple_X,和自定义对流扩散代码。赫丘耳在一个不假设球对称或小扰动的坐标系中求解行星结构的流体静力学方程。它能够精确地描述行星的压力、密度和重力,行星的旋转速度可以任意快到其稳定极限(赤道的角加速度正好抵消重力)。为了这个项目,将改进HERCULES,以纳入更广泛的状态方程。然后,将在HERCULES预测的结构中使用pMELTS校准计算作为纬度函数的熔化程度以及原地壳的组成和厚度,pMELTS校准在MATLAB或Python(在NSF地理信息学支持下开发的工具)的alphaMELTS中实现。下一个阶段是从静力学转向动力学,并使用结合弹塑性流变学、脆性破坏和粘性流动的构造物理学代码计算变形速率和机制。 了解预测的断层类型和运动幅度,研究人员可以使用对流扩散模型描述原地壳物质将经历的压力-温度路径。最后,沿着这些P-T路径,Perplex_X伪截面将被用来预测长英质熔体将在哪里形成,以及由此产生的地壳是否会非常稳定,并可能存活足够长的时间,以便在表面被侵蚀并产生碎屑锆石。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Geochemical Constraints on the Origin of the Moon and Preservation of Ancient Terrestrial Heterogeneities
  • DOI:
    10.1007/s11214-020-00729-z
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    10.3
  • 作者:
    S. Lock;K. Bermingham;R. Parai;M. Boyet
  • 通讯作者:
    S. Lock;K. Bermingham;R. Parai;M. Boyet
The Lithophile Element Budget of Earth's Core
  • DOI:
    10.1029/2021gc009986
  • 发表时间:
    2022-02-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Chidester, B. A.;Lock, S. J.;Campbell, A. J.
  • 通讯作者:
    Campbell, A. J.
Tidal Evolution of the Earth–Moon System with a High Initial Obliquity
高初始倾角下地月系统的潮汐演化
  • DOI:
    10.3847/psj/ac12d1
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ćuk, Matija;Lock, Simon J.;Stewart, Sarah T.;Hamilton, Douglas P.
  • 通讯作者:
    Hamilton, Douglas P.
Clustering-informed Cinematic Astrophysical Data Visualization with Application to the Moon-forming Terrestrial Synestia
  • DOI:
    10.1016/j.ascom.2020.100424
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. D. Aleo;S. Lock;D. Cox;Stuart Levy;J. Naiman;A. Christensen;Kalina Borkiewicz;Robert Patterson
  • 通讯作者:
    P. D. Aleo;S. Lock;D. Cox;Stuart Levy;J. Naiman;A. Christensen;Kalina Borkiewicz;Robert Patterson
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Asimow其他文献

深俯冲陆壳岩石部分熔融与苏鲁超高压榴辉岩中长英质多晶包裹体的形成
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    曾令森;陈方远;陈晶;梁凤华;Paul Asimow
  • 通讯作者:
    Paul Asimow
Neoproterozoic boninite-series rocks in South China: A depleted mantle source modified by sediment-derived melt
华南新元古代栉泥岩系岩石:沉积物熔融改造的贫化地幔源
  • DOI:
    10.1016/j.chemgeo.2014.09.004
  • 发表时间:
    2014-11
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Zhao Jun-Hong;Paul Asimow
  • 通讯作者:
    Paul Asimow

Paul Asimow的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Asimow', 18)}}的其他基金

MRI: Acquisition of a field emission electron microprobe for Caltech Division of Geological and Planetary Sciences
MRI:为加州理工学院地质与行星科学部购买场发射电子探针
  • 批准号:
    2117942
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Geoinformatics Facility: Integration of alphaMELTS petrologic software with flexible modeling environments
地理信息学设施:alphaMELTS 岩石学软件与灵活的建模环境的集成
  • 批准号:
    1947616
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: EarthCube Data Capabilities: A data-driven modeling infrastructure to support research and education in volcanology, geochemistry and petrology
协作研究:EarthCube 数据功能:数据驱动的建模基础设施,支持火山学、地球化学和岩石学的研究和教育
  • 批准号:
    2026819
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Linking High 3He/4He to Other Isotopic Systems in Baffin Island Lavas
合作研究:将高 3He/4He 与巴芬岛熔岩中的其他同位素系统联系起来
  • 批准号:
    1911902
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Shock Wave Studies of Liquids in Earth's Core and Mantle
地核和地幔液体的冲击波研究
  • 批准号:
    1725349
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Laboratory Technician Support: Shock Wave Experiments in Geophysics
实验室技术人员支持:地球物理学中的冲击波实验
  • 批准号:
    1829277
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
The role of grain-scale non-equilibrium thermodynamics in the production and evolution of oceanic crust and lithosphere
颗粒尺度非平衡热力学在洋壳和岩石圈产生和演化中的作用
  • 批准号:
    1826310
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Sea level induced hydrothermal activity as a trigger for glacial terminations
合作研究:海平面引起的热液活动作为冰川终止的触发因素
  • 批准号:
    1558372
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Fate of Subducted Carbonates: Structure Prediction and Solid Solution Modeling
俯冲碳酸盐的命运:结构预测和固溶体建模
  • 批准号:
    1551433
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Geoinformatics: alphaMELTS computational thermodynamics software
地理信息学:alphaMELTS 计算热力学软件
  • 批准号:
    1550934
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

双原子分子高激发振转能级的精确研究
  • 批准号:
    10774105
  • 批准年份:
    2007
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目

相似海外基金

New Tools and Applications for Kinetics and Dynamics with Broadband Rotational Spectroscopy
宽带旋转光谱动力学和动力学的新工具和应用
  • 批准号:
    2247776
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Spin measurement of supermassive black holes and verification of rotational-energy extraction mechanism via magnetic field
超大质量黑洞的自旋测量以及通过磁场验证旋转能量提取机制
  • 批准号:
    23H00117
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of "Rotational Magnetic Field-Induction Sorting" as a Novel Rare Metal Recovery Method
开发“旋转磁场感应分选”新型稀有金属回收方法
  • 批准号:
    23H03575
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Rotational spectroscopy of molecular ions produced by an intense ultrashort laser pulse
强超短激光脉冲产生的分子离子的旋转光谱
  • 批准号:
    23K13705
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Novel Sample Introduction Methodologies for Molecular Rotational Resonance (MRR) Spectroscopy
分子旋转共振 (MRR) 光谱的新样品引入方法
  • 批准号:
    10603098
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Rotational Motion of Liquid Droplets
液滴的旋转运动
  • 批准号:
    575735-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
A new theory, vectorial and rotational canonical transformation, overcomes a barrier separating structural and mechanism analyses
向量和旋转正则变换这一新理论克服了结构分析和机制分析之间的障碍
  • 批准号:
    22K18853
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Magnetic Rotational Exploratory Platform for Coronary Lesions
冠状动脉病变磁旋转探索平台
  • 批准号:
    10384033
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Molecular Rotational Resonance Spectroscopy Instrumentation for the Quantification and Characterization of Enantioisotopomers
用于对映异构体定量和表征的分子旋转共振光谱仪器
  • 批准号:
    10797702
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Dynamics of Molecules in Extreme Rotational States Made with an Optical Centrifuge
用光学离心机制造的极端旋转状态下的分子动力学
  • 批准号:
    2155135
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了