MRI: Acquisition of a field emission electron microprobe for Caltech Division of Geological and Planetary Sciences

MRI:为加州理工学院地质与行星科学部购买场发射电子探针

基本信息

  • 批准号:
    2117942
  • 负责人:
  • 金额:
    $ 100万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

This Major Research Instrumentation (MRI) award will enable the purchase, installation, and commissioning of a state-of-the-art instrument for chemical analysis of natural and engineered solid materials down to the nanometer (one billionth of a meter) scale. The instrument will be available to all science and engineering programs across the Caltech campus, NASA’s Jet Propulsion Laboratory, as well as to outside users. The instrument may be operated remotely and will be made available via the Remotely Accessible Instruments in Nanotechnology (RAIN) consortium for free access by student researchers and classes at minority-serving institutions nationwide ranging from community and technical colleges to high schools and even elementary schools. The electron microprobe is a basic tool of solid Earth geology and geochemistry as well as related fields such as meteoritics and planetary sample return, environmental microbiology, material science and nanotechnology. The advanced electron source included in this instrument provides a very bright, focused beam that enables imaging at high spatial resolution and excitation of characteristic X-rays from a very small analytical volume. Each chemical element emits X-rays at particular wavelengths; the count rate of X-ray photons emitted by a sample at these characteristic wavelengths is proportional to the concentration of that element in the sample. The electron probe automates the job of separating X-rays by wavelength, counting the number of X-ray photons emitted at particular wavelengths, and comparing the count rate in an unknown material to that in standard materials. This allows the electron microprobe to detect when an element is present above a low detection limit and to determine the abundance of each element in a sample with about 1% relative precision. Initial applications will include characterization of tiny mineral grains in meteorites that date back to (or even precede) the origin of the Solar system, experimental samples that reproduce conditions in the deep Earth or during collisions in the asteroid belt, and functional materials for batteries and energy generation.The key capabilities that the new instrument will bring are the field emission electron source, the Si-drift detector energy dispersive X-ray spectrometer, and the high-resolution cathodoluminescence sensor. While nanoscale imaging resolution, essential for targeting analyses and ensuring sample homogeneity, is straightforward, optimizing the spatial resolution of quantitative analysis without sacrificing accuracy or precision, requires special care. The new instrument will support a study of new approaches to unsupported thin specimen analysis as a path to high-resolution analysis. Challenges to be overcome include holding unsupported specimens in the beam path, updated software that accounts accurately for thin samples, and an extensive campaign of verification against well-characterized standards. Turning to more of the applications of the new instrument and its improved imaging and analysis capabilities, researchers will focus on several goals. These include: (1) analysis of experimental samples to probe diffusion at short length scales, fine-grained multiphase assemblages, and synthesized starting materials whose homogeneity at the nano-scale is essential information; (2) analysis of terrestrial igneous, metamorphic, and sedimentary rocks including basaltic glasses that may contain nano-inclusions, zircons for geochronology, and redox-sensitive tracers with unknown hosting phases; (3) analysis of meteorites and new nano-minerals including refractory inclusions, high-pressure shock-induced phases, non-destructive bulk analysis, and bio-synthetic single-domain magnetic crystals; and (4) analysis of microbiological specimens from the environment and culture, with single-cell resolution of the distribution of key macro- and micro-nutrient elements. This award was co-funded by the MRI program and the Instrumentation and Facilities program in the Earth Science Division.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这一重大研究仪器(MRI)奖将使人们能够购买、安装和调试最先进的仪器,用于精确到纳米(十亿分之一米)尺度的天然和工程固体材料的化学分析。该仪器将向加州理工大学园区、NASA喷气推进实验室的所有科学和工程项目以及外部用户开放。该仪器可以远程操作,并将通过远程可访问纳米技术仪器(RAIN)联盟提供,供学生研究人员和全国范围内从社区和技术学院到高中甚至小学的少数群体服务机构的课程免费使用。电子探针是固体地球地质和地球化学的基本工具,也是陨石和行星样品回收、环境微生物学、材料科学和纳米技术等相关领域的基本工具。该仪器中包含的先进电子源提供了非常明亮的聚焦光束,能够以高空间分辨率成像,并从非常小的分析体积激发出特征X射线。每种化学元素在特定波长发射X射线;样品在这些特征波长发射的X射线光子的计数速率与该元素在样品中的浓度成正比。电子探测器自动完成按波长分离X射线的工作,计算在特定波长发射的X射线光子的数量,并将未知材料和标准材料中的计数率进行比较。这允许电子探针检测元素何时存在于低检测下限之上,并以大约1%的相对精度确定样品中每种元素的丰度。最初的应用将包括表征可追溯到(或甚至早于)太阳系起源的陨石中的微小矿物颗粒,再现地球深处或小行星带碰撞期间条件的实验样品,以及用于电池和能源产生的功能材料。新仪器将带来的关键能力是场发射电子源、硅漂移探测器能量色散X射线光谱仪和高分辨率阴极发光传感器。虽然纳米级成像分辨率对于靶向分析和确保样品均一性至关重要,但在不牺牲准确度或精密度的情况下优化定量分析的空间分辨率需要特别小心。新仪器将支持对无支撑薄层样品分析的新方法的研究,作为实现高分辨率分析的途径。需要克服的挑战包括在光束路径中保持无支撑的样品,更新准确解释薄样品的软件,以及针对具有良好特征的标准开展广泛的验证活动。在谈到新仪器的更多应用及其改进的成像和分析能力时,研究人员将专注于几个目标。这些包括:(1)分析实验样品以探测短尺度的扩散、细粒多相组合和合成起始物质,其在纳米尺度上的均质性是基本信息;(2)陆地火成岩、变质岩和沉积岩的分析,包括可能含有纳米包裹体的玄武岩玻璃、锆石和具有未知赋存相的氧化还原敏感示踪剂;(3)陨石和新的纳米矿物的分析,包括耐火包裹体、高压冲击波诱导相、非破坏性块体分析和生物合成的单域磁性晶体;以及(4)从环境和培养中分析微生物标本,用单细胞分辨关键的宏微营养元素的分布。该奖项由核磁共振计划和地球科学部的仪器和设施计划共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Asimow其他文献

深俯冲陆壳岩石部分熔融与苏鲁超高压榴辉岩中长英质多晶包裹体的形成
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    曾令森;陈方远;陈晶;梁凤华;Paul Asimow
  • 通讯作者:
    Paul Asimow
Neoproterozoic boninite-series rocks in South China: A depleted mantle source modified by sediment-derived melt
华南新元古代栉泥岩系岩石:沉积物熔融改造的贫化地幔源
  • DOI:
    10.1016/j.chemgeo.2014.09.004
  • 发表时间:
    2014-11
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Zhao Jun-Hong;Paul Asimow
  • 通讯作者:
    Paul Asimow

Paul Asimow的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Asimow', 18)}}的其他基金

Geoinformatics Facility: Integration of alphaMELTS petrologic software with flexible modeling environments
地理信息学设施:alphaMELTS 岩石学软件与灵活的建模环境的集成
  • 批准号:
    1947616
  • 财政年份:
    2020
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Collaborative Research: EarthCube Data Capabilities: A data-driven modeling infrastructure to support research and education in volcanology, geochemistry and petrology
协作研究:EarthCube 数据功能:数据驱动的建模基础设施,支持火山学、地球化学和岩石学的研究和教育
  • 批准号:
    2026819
  • 财政年份:
    2020
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
The effect of rotational evolution on the surface and interior of the early Earth
自转演化对早期地球表面和内部的影响
  • 批准号:
    1947614
  • 财政年份:
    2020
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Collaborative Research: Linking High 3He/4He to Other Isotopic Systems in Baffin Island Lavas
合作研究:将高 3He/4He 与巴芬岛熔岩中的其他同位素系统联系起来
  • 批准号:
    1911902
  • 财政年份:
    2019
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Shock Wave Studies of Liquids in Earth's Core and Mantle
地核和地幔液体的冲击波研究
  • 批准号:
    1725349
  • 财政年份:
    2018
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Laboratory Technician Support: Shock Wave Experiments in Geophysics
实验室技术人员支持:地球物理学中的冲击波实验
  • 批准号:
    1829277
  • 财政年份:
    2018
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
The role of grain-scale non-equilibrium thermodynamics in the production and evolution of oceanic crust and lithosphere
颗粒尺度非平衡热力学在洋壳和岩石圈产生和演化中的作用
  • 批准号:
    1826310
  • 财政年份:
    2018
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Collaborative Research: Sea level induced hydrothermal activity as a trigger for glacial terminations
合作研究:海平面引起的热液活动作为冰川终止的触发因素
  • 批准号:
    1558372
  • 财政年份:
    2016
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Fate of Subducted Carbonates: Structure Prediction and Solid Solution Modeling
俯冲碳酸盐的命运:结构预测和固溶体建模
  • 批准号:
    1551433
  • 财政年份:
    2016
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Geoinformatics: alphaMELTS computational thermodynamics software
地理信息学:alphaMELTS 计算热力学软件
  • 批准号:
    1550934
  • 财政年份:
    2016
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant

相似海外基金

Acquisition-independent machine learning for morphometric analysis of underrepresented aging populations with clinical and low-field brain MRI
独立于采集的机器学习,通过临床和低场脑 MRI 对代表性不足的老龄化人群进行形态计量分析
  • 批准号:
    10739049
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
Optimizing Acquisition and Reconstruction of Under-sampled MRI for Signal Detection
优化欠采样 MRI 的采集和重建以进行信号检测
  • 批准号:
    10730707
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
MRI: Acquisition of a Scanning Near-Field Optical Microscope (neaSNOM) with Combined Nano-Infrared/Tip-Enhanced Raman Spectroscopy for Research & Education
MRI:购买扫描近场光学显微镜 (neaSNOM) 并结合纳米红外/尖端增强拉曼光谱进行研究
  • 批准号:
    2216239
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Field-Emission Scanning Electron Microscope for Multi-Disciplinary Research in the State of New Mexico
MRI:购买场发射扫描电子显微镜用于新墨西哥州的多学科研究
  • 批准号:
    2215982
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a field emission scanning electron microscope to expand characterization capabilities at the University of Iowa
MRI:购买场发射扫描电子显微镜以扩展爱荷华大学的表征能力
  • 批准号:
    2215495
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Field Emission Scanning Electron Microscope for Interdisciplinary Research and Teaching at California State University, Bakersfield
MRI:购买场发射扫描电子显微镜用于加州州立大学贝克斯菲尔德分校的跨学科研究和教学
  • 批准号:
    2215523
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Monochromated, Magnetic-Field-Free, Atomic-Resolution Scanning Transmission Electron Microscope Enabling Multidisciplinary Research and Education
MRI:获取单色、无磁场、原子分辨率扫描透射电子显微镜,实现多学科研究和教育
  • 批准号:
    2215976
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Field Emission Scanning Electron Microscope for West Chester University, a Primarily Undergraduate Institution
MRI:为西切斯特大学(一所主要本科机构)购买场发射扫描电子显微镜
  • 批准号:
    2216272
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Novel high-field MRI compatible subdural electrode and acquisition system for recording and stimulation in small animals
新型高场 MRI 兼容硬膜下电极和采集系统,用于小动物的记录和刺激
  • 批准号:
    10325694
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
  • 项目类别:
MRI: Acquisition of a Field Emission Scanning Electron Microscope to Advance Multidisciplinary Research and Education
MRI:购买场发射扫描电子显微镜以推进多学科研究和教育
  • 批准号:
    2116612
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了