CRII: III: Learning Dynamic Graph-based Precursors for Event Modeling
CRII:III:学习基于动态图的事件建模前体
基本信息
- 批准号:1948432
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
From epidemic outbreaks to civil strife, societal events that involve large populations often deeply affect people’s lives and cause economic burden. Forecasting these events while providing context analysis helps social scientists and health practitioners to interpret and study human societies. Although many existing research efforts strive to forecast societal events, providing structured explanations for prediction is still limited given the underlying connections among entities, actions, and locations behind these events. This project presents a novel paradigm of identifying and organizing multiple types of precursors while predicting events. It identifies changing relations among entities as events evolve and studies the hidden geographical influence on events. Both entity relations and geographical connections are represented by dynamic graphs. Organizing event precursors in graphs greatly reduces the complexity of comprehending unstructured input data and delivers interpretable summarizations for event prediction. This work will involve educational activities such as development of course curriculum; training of graduate, undergraduate, and high-school students; encouraging participation of women and minority groups in academic research; and dissemination of outcomes such as software and datasets for the general public.To achieve these goals, this project will integrate multiple data sources and analyze complex hierarchical features in modeling events. Although a variety of online data has been utilized to analyze and predict societal events, it also raises new challenges such as: (1) accounting for dynamic relationships within data sets; (2) preserving and learning complex knowledge structures with heterogeneous data sets; and (3) ensuring interpretable results for predictions and decision making. This project will address the challenges in the following ways: (i) it will integrate multi-source data by learning a unified multi-level semantic encoding; (ii) it will identify historical key semantics by paying attention to hierarchical text structures in a recurrent learning process; (iii) it will provide explanations for event prediction by incorporating local dynamic graph patterns and global influence graph patterns. The specific research aims will be complemented with an extensive set of evaluation plans including a retrospective evaluation on real-word event records and a user survey to evaluate graph visualizations of event precursors. The project results, including graph based empirical data, predictive evaluation tools, and open source software for analyzing events, will be shared with computer science research community and stakeholders in computational healthcare, and social science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从流行病爆发到内乱,涉及大量人口的社会事件往往深刻影响人们的生活并造成经济负担。预测这些事件,同时提供背景分析,有助于社会科学家和卫生从业人员解释和研究人类社会。虽然许多现有的研究努力预测社会事件,提供结构化的解释预测仍然是有限的,因为这些事件背后的实体,行动和位置之间的潜在联系。该项目提出了一种新的模式,识别和组织多种类型的前兆,同时预测事件。它确定随着事件的发展而变化的实体之间的关系,并研究隐藏的地理对事件的影响。实体关系和地理连接都用动态图表示。在图形中组织事件前兆大大降低了理解非结构化输入数据的复杂性,并为事件预测提供了可解释的摘要。本项目将通过课程设置、研究生、大学生、高中生的培养、女性和少数民族参与学术研究、软件和数据集等成果向公众的传播等教育活动,整合多个数据源,分析事件建模中复杂的层次特征。 虽然各种在线数据已被用于分析和预测社会事件,但它也提出了新的挑战,例如:(1)解释数据集内的动态关系;(2)保存和学习具有异构数据集的复杂知识结构;以及(3)确保预测和决策的可解释结果。该项目将通过以下方式应对挑战:(i)通过学习统一的多层次语义编码来整合多源数据;(ii)通过关注循环学习过程中的分层文本结构来识别历史关键语义;(iii)通过结合局部动态图模式和全局影响图模式来解释事件预测。具体的研究目标将得到一套广泛的评估计划的补充,包括对真实事件记录的回顾性评估和用户调查,以评估事件前兆的图形可视化。该项目的成果,包括基于图形的经验数据,预测评估工具和用于分析事件的开源软件,将与计算机科学研究社区和计算医疗保健和社会科学的利益相关者分享。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Incorporating Relational Knowledge in Explainable Fake News Detection
- DOI:10.1007/978-3-030-75768-7_32
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Kun Wu;Xu Yuan;Yue Ning
- 通讯作者:Kun Wu;Xu Yuan;Yue Ning
FairLP: Towards Fair Link Prediction on Social Network Graphs
FairLP:迈向社交网络图上的公平链接预测
- DOI:10.1609/icwsm.v16i1.19321
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Li, Yanying;Wang, Xiuling;Ning, Yue;Wang, Hui
- 通讯作者:Wang, Hui
Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs
- DOI:10.1609/aaai.v36i4.20380
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Chang Lu;Tian Han;Yue Ning
- 通讯作者:Chang Lu;Tian Han;Yue Ning
Collaborative Graph Learning with Auxiliary Text for Temporal Event Prediction in Healthcare
- DOI:10.24963/ijcai.2021/486
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Chang Lu;Chandan K. Reddy;Prithwish Chakraborty;Samantha Kleinberg;Yue Ning
- 通讯作者:Chang Lu;Chandan K. Reddy;Prithwish Chakraborty;Samantha Kleinberg;Yue Ning
Algorithmic fairness in computational medicine.
计算医学中的算法公平性。
- DOI:10.1016/j.ebiom.2022.104250
- 发表时间:2022-10
- 期刊:
- 影响因子:11.1
- 作者:Xu, Jie;Xiao, Yunyu;Wang, Wendy Hui;Ning, Yue;Shenkman, Elizabeth A.;Bian, Jiang;Wang, Fei
- 通讯作者:Wang, Fei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yue Ning其他文献
Track Defect Detection Based on Improved Rtmdet
基于改进Rtmdet的轨道缺陷检测
- DOI:
10.1145/3654823.3654890 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Rong Fan;Qi Sun;Qi He;Zhi Qiao;Hongzhu Chen;Wenqiang Zhao;Lin Ma;Yue Ning;Pengfei Shi - 通讯作者:
Pengfei Shi
Apoptotic Cell-Mediated Immunoregulation of Dendritic Cells Does Not Require iC3b Opsonization1
凋亡细胞介导的树突状细胞免疫调节不需要 iC3b 调理作用1
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:4.4
- 作者:
E. Behrens;Yue Ning;Nidal E. Muvarak;P. Zoltick;A. Flake;S. Gallucci - 通讯作者:
S. Gallucci
Exosome-mediated miR-7-5p delivery enhances the anticancer effect of Everolimus via blocking MNK/eIF4E axis in non-small cell lung cancer
- DOI:
https://doi.org/10.1038/s41419-022-04565-7 - 发表时间:
2022 - 期刊:
- 影响因子:
- 作者:
Sile Liu;Weiyuan Wang;Yue Ning;Hongmei Zheng;Yuting Zhan;Haihua Wang;Yang Yang;Jiadi Luo;Qiuyuan Wen;Hongjing Zang;Jinwu Peng;Jian Ma;Songqing Fan - 通讯作者:
Songqing Fan
Simulation of refrigerant-lubricant two-phase flow characteristics and performance test in space compressor
空间压缩机制冷剂-润滑油两相流特性模拟及性能测试
- DOI:
10.1016/j.applthermaleng.2023.120105 - 发表时间:
2023-01 - 期刊:
- 影响因子:6.4
- 作者:
Yilin Ye;Rui Ma;Yue Ning;Yuting Wu - 通讯作者:
Yuting Wu
General and Local: Averaged k-Dependence Bayesian Classifiers (SCI检索)
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:2.7
- 作者:
LiMin Wang;HaoYu Zhao;MingHui Sun;Yue Ning - 通讯作者:
Yue Ning
Yue Ning的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yue Ning', 18)}}的其他基金
NSF Student Travel Grant for the 2022 ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2022)
NSF 学生旅费资助 2022 年 ACM SIGKDD 知识发现和数据挖掘会议 (KDD 2022)
- 批准号:
2223561 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CAREER: Towards Deep Interpretable Predictions for Multi-Scope Temporal Events
职业:对多范围时间事件进行深度可解释的预测
- 批准号:
2047843 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
相似国自然基金
全钒液流电池负极V(II)/V(III)电化学氧化还原的催化机理研究
- 批准号:2025JJ50094
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
吡咯烷生物碱所致肝窦阻塞综合征III区肝损伤的新机制——局部氨代谢紊乱
- 批准号:JCZRYB202500652
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
硅基III-V族亚微米线激光器的光场模式调控与耦合机理研究
- 批准号:JCZRQN202501004
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
MXene/nZVI@FH材料微域层界面调控水中砷(III)氧化迁移机制
- 批准号:2025JJ50319
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
HOXC8/OPN/CD44/EGFR轴介导的奥沙利铂耐药性在III期右半结肠癌耐药进展中的研究
- 批准号:2025JJ50694
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI结合超声原始射频信号评估Bethesda III/IV类甲状腺肿瘤包膜和血管侵犯研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
硫化砷靶向VPS4B-ESCRT-III调控自噬溶酶体通路逆转三阴性乳腺癌顺铂耐药性的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
ASPGR与MRC2双受体介导铱(III)配合物
脂质体抗肝肿瘤研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
Ap-Exo III 联合模式识别构建降尿酸药
物筛选新方法的研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
经关节突截骨矫治III期Kummell病临床有效性分析
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CRII: III: Towards Improving the Handling of Heterogeneity and Personalization in Federated Learning
CRII:III:改进联邦学习中异构性和个性化的处理
- 批准号:
2246067 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: III: Self-Supervised Graph Neural Network Meta-Learning for Cancer Multi-Omics and Driver Discovery
CRII:III:用于癌症多组学和驱动发现的自监督图神经网络元学习
- 批准号:
2245805 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: III: Pursuing Interpretability in Utilitarian Online Learning Models
CRII:III:追求功利在线学习模式的可解释性
- 批准号:
2245946 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: III: Harnessing Deep-Learning to Simplify Biological Inference from Complex Imaging Data
CRII:III:利用深度学习简化复杂成像数据的生物推断
- 批准号:
2246064 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: III: Learning networks from strategic decisions: enabling network intervention and revealing social privacy risks without structural information
CRII:III:从战略决策中学习网络:在没有结构信息的情况下实现网络干预并揭示社会隐私风险
- 批准号:
2153468 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: III: Knowledge Graph Completion with Transferable Representation Learning
CRII:III:通过可迁移表示学习完成知识图谱
- 批准号:
2105329 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: III: Informative Bayesian Learning and Data Gathering Through Expert-Acquired Data
CRII:III:通过专家获取的数据进行信息贝叶斯学习和数据收集
- 批准号:
2202395 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: III: Graph Neural Networks: A Feature and Structure Learning Approach
CRII:III:图神经网络:一种特征和结构学习方法
- 批准号:
2104797 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: III: Deep Learning Methods for Protein Inter-residue Distance Prediction
CRII:III:蛋白质残基间距离预测的深度学习方法
- 批准号:
1948117 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: III: Fair Machine Learning with Restricted Access to Sensitive Personal Data
CRII:III:公平机器学习,限制访问敏感个人数据
- 批准号:
2101936 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant