CAREER: Towards Deep Interpretable Predictions for Multi-Scope Temporal Events
职业:对多范围时间事件进行深度可解释的预测
基本信息
- 批准号:2047843
- 负责人:
- 金额:$ 57.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-15 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Many human events, such as personal visits to hospitals, flu outbreaks, or protests, are recorded in temporal sequences and exhibit recurring patterns. For instance, in hospital admission records, patients who have been diagnosed with hypertension often later visit the hospital for heart diseases. Predictions of human events using past event patterns are key to many stakeholders in AI-assisted decision making. Interpretable predictive models will significantly improve transparency in these decision-making processes. Recently, interpretable machine learning has been drawing an increasing amount of attention. However, most state-of-the-art works in this domain focus on static analysis such as identifying pixels for object detection in an image. Little work has been developed for temporal event prediction in dynamic, heterogeneous, and multi-source data sequences. To address this problem, this project will support the design of transformative interpretable paradigms for temporal event sequences of different scopes with heterogeneous and multi-source features. Providing predictive tools that can capture hierarchical, relational, and complex evidence will enrich and support robust forecasting in the future. This work will involve educational activities such as developing new courses on interpretable machine learning; training graduate, undergraduate, and high-school students in interdisciplinary studies; and increasing participation of women and minority groups in academic research. Core outcomes of this project such as software, datasets, and publications will be made available to the general public.This project will create a new set of interpretable mechanisms that provide dynamic, heterogeneous, and multi-source explanations in temporal event prediction. Although a variety of explainable approaches have been developed in many traditional machine learning tasks, several unique challenges remain unexplored: (1) Regulating attention-based models for auditing a model is an urgent need given the wide adoption of attention mechanisms in deep learning. (2) Most current approaches focus on selecting important input features based on correlations which often lack causal evidence. (3) Reciprocal relations and dependencies among heterogeneous data sources are largely ignored in current research. This project will address these challenges in the following ways: (i) It will investigate new collaborative attention regulation strategies by using domain knowledge for calibration. (ii) It will integrate dynamic causal discovery into temporal event prediction with hidden confounder representation learning. (iii) It will provide multi-faceted explanations by distilling semantic knowledge from unstructured text and incorporating this knowledge in a co-learning framework with multi-source temporal data. The specific research aims will be complemented by an extensive set of evaluation plans including standard retrospective evaluation on multi-scope real-world event records as well as multiple user studies to evaluate the interpretability of developed models. The project outcomes including observational data, interpretable prediction tools, and open-source software for stakeholders will be shared with the computer science research community and other practitioners in healthcare, political science, and epidemiology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多人类事件,如个人访问医院,流感爆发或抗议,都是以时间序列记录的,并表现出重复的模式。例如,在入院记录中,被诊断患有高血压的患者往往后来因心脏病前往医院。使用过去的事件模式预测人类事件是人工智能辅助决策中许多利益相关者的关键。可解释的预测模型将大大提高这些决策过程的透明度。最近,可解释的机器学习引起了越来越多的关注。然而,大多数国家的最先进的作品在这一领域的重点是静态分析,如识别像素的图像中的目标检测。在动态、异构和多源数据序列中,时间事件预测的工作很少。为了解决这个问题,这个项目将支持的异构和多源功能的不同范围的时间事件序列的转换可解释范式的设计。提供能够捕捉层次、关系和复杂证据的预测工具将丰富和支持未来的稳健预测。这项工作将涉及教育活动,例如开发可解释机器学习的新课程;培训研究生,本科生和高中生进行跨学科研究;以及增加妇女和少数群体参与学术研究。该项目的核心成果,如软件,数据集和出版物将提供给公众。该项目将创建一套新的可解释机制,在时间事件预测中提供动态,异构和多源解释。尽管在许多传统的机器学习任务中已经开发了各种可解释的方法,但仍有一些独特的挑战尚未探索:(1)鉴于深度学习中广泛采用注意力机制,迫切需要调节基于注意力的模型来审核模型。(2)目前大多数方法都侧重于选择重要的输入功能的基础上的相关性,往往缺乏因果关系的证据。(3)异构数据源之间的相互关系和依赖性在目前的研究中被很大程度上忽略了。该项目将通过以下方式解决这些挑战:(i)通过使用领域知识进行校准,研究新的协作注意力调节策略。(ii)它将动态因果发现与隐藏混淆表征学习集成到时间事件预测中。(iii)它将通过从非结构化文本中提取语义知识,并将这些知识与多源时态数据结合在一个共同学习框架中,提供多方面的解释。具体的研究目标将得到一套广泛的评估计划的补充,包括对多范围真实世界事件记录的标准回顾性评估以及多个用户研究,以评估开发模型的可解释性。该项目的成果包括观测数据、可解释的预测工具和面向利益相关者的开源软件,将与计算机科学研究社区以及医疗保健、政治学和流行病学领域的其他从业者分享。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FairLP: Towards Fair Link Prediction on Social Network Graphs
FairLP:迈向社交网络图上的公平链接预测
- DOI:10.1609/icwsm.v16i1.19321
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Li, Yanying;Wang, Xiuling;Ning, Yue;Wang, Hui
- 通讯作者:Wang, Hui
Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs
- DOI:10.1609/aaai.v36i4.20380
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Chang Lu;Tian Han;Yue Ning
- 通讯作者:Chang Lu;Tian Han;Yue Ning
Algorithmic fairness in computational medicine.
计算医学中的算法公平性。
- DOI:10.1016/j.ebiom.2022.104250
- 发表时间:2022-10
- 期刊:
- 影响因子:11.1
- 作者:Xu, Jie;Xiao, Yunyu;Wang, Wendy Hui;Ning, Yue;Shenkman, Elizabeth A.;Bian, Jiang;Wang, Fei
- 通讯作者:Wang, Fei
Robust Event Forecasting with Spatiotemporal Confounder Learning
- DOI:10.1145/3534678.3539427
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Songgaojun Deng;H. Rangwala;Yue Ning
- 通讯作者:Songgaojun Deng;H. Rangwala;Yue Ning
Self-Supervised Graph Learning With Hyperbolic Embedding for Temporal Health Event Prediction
- DOI:10.1109/tcyb.2021.3109881
- 发表时间:2021-06
- 期刊:
- 影响因子:11.8
- 作者:Chang Lu;Chandan K. Reddy;Yue Ning
- 通讯作者:Chang Lu;Chandan K. Reddy;Yue Ning
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yue Ning其他文献
Track Defect Detection Based on Improved Rtmdet
基于改进Rtmdet的轨道缺陷检测
- DOI:
10.1145/3654823.3654890 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Rong Fan;Qi Sun;Qi He;Zhi Qiao;Hongzhu Chen;Wenqiang Zhao;Lin Ma;Yue Ning;Pengfei Shi - 通讯作者:
Pengfei Shi
Exosome-mediated miR-7-5p delivery enhances the anticancer effect of Everolimus via blocking MNK/eIF4E axis in non-small cell lung cancer
- DOI:
https://doi.org/10.1038/s41419-022-04565-7 - 发表时间:
2022 - 期刊:
- 影响因子:
- 作者:
Sile Liu;Weiyuan Wang;Yue Ning;Hongmei Zheng;Yuting Zhan;Haihua Wang;Yang Yang;Jiadi Luo;Qiuyuan Wen;Hongjing Zang;Jinwu Peng;Jian Ma;Songqing Fan - 通讯作者:
Songqing Fan
Apoptotic Cell-Mediated Immunoregulation of Dendritic Cells Does Not Require iC3b Opsonization1
凋亡细胞介导的树突状细胞免疫调节不需要 iC3b 调理作用1
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:4.4
- 作者:
E. Behrens;Yue Ning;Nidal E. Muvarak;P. Zoltick;A. Flake;S. Gallucci - 通讯作者:
S. Gallucci
Simulation of refrigerant-lubricant two-phase flow characteristics and performance test in space compressor
空间压缩机制冷剂-润滑油两相流特性模拟及性能测试
- DOI:
10.1016/j.applthermaleng.2023.120105 - 发表时间:
2023-01 - 期刊:
- 影响因子:6.4
- 作者:
Yilin Ye;Rui Ma;Yue Ning;Yuting Wu - 通讯作者:
Yuting Wu
General and Local: Averaged k-Dependence Bayesian Classifiers (SCI检索)
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:2.7
- 作者:
LiMin Wang;HaoYu Zhao;MingHui Sun;Yue Ning - 通讯作者:
Yue Ning
Yue Ning的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yue Ning', 18)}}的其他基金
NSF Student Travel Grant for the 2022 ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2022)
NSF 学生旅费资助 2022 年 ACM SIGKDD 知识发现和数据挖掘会议 (KDD 2022)
- 批准号:
2223561 - 财政年份:2022
- 资助金额:
$ 57.19万 - 项目类别:
Standard Grant
CRII: III: Learning Dynamic Graph-based Precursors for Event Modeling
CRII:III:学习基于动态图的事件建模前体
- 批准号:
1948432 - 财政年份:2020
- 资助金额:
$ 57.19万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
- 批准号:
2338512 - 财政年份:2024
- 资助金额:
$ 57.19万 - 项目类别:
Continuing Grant
Deep-learning-based surrogate model for time-history analysis towards development of AI-driven Earthquake Engineering
基于深度学习的时程分析代理模型,以推动人工智能驱动的地震工程的发展
- 批准号:
23K13437 - 财政年份:2023
- 资助金额:
$ 57.19万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Genome synthesis of a universal synthetic host for antimicrobial drug production - towards the first deep-engineering of an actinobacterial genome
用于抗菌药物生产的通用合成宿主的基因组合成——迈向放线菌基因组的首次深度工程
- 批准号:
BB/X012573/1 - 财政年份:2023
- 资助金额:
$ 57.19万 - 项目类别:
Research Grant
BIOINDUSTRY 4.0: RI services to promote deep digitalization of Industrial Biotechnology - towards smart biomanufacturing
生物工业4.0:RI服务促进工业生物技术深度数字化——迈向智能生物制造
- 批准号:
10048146 - 财政年份:2023
- 资助金额:
$ 57.19万 - 项目类别:
EU-Funded
RI services to promote deep digitalization of Industrial Biotechnology - towards smart biomanufacturing
RI服务促进工业生物技术深度数字化——迈向智能生物制造
- 批准号:
10069587 - 财政年份:2023
- 资助金额:
$ 57.19万 - 项目类别:
EU-Funded
RI services to promote deep digitalization of Industrial Biotechnology - towards smart biomanufacturing
RI服务促进工业生物技术深度数字化——迈向智能生物制造
- 批准号:
10068404 - 财政年份:2023
- 资助金额:
$ 57.19万 - 项目类别:
EU-Funded
CCSS: Reference-free and Spatial-aware Deep Sensor Array Decoding towards High-fidelity Remote Health Monitoring
CCSS:无参考和空间感知深度传感器阵列解码,实现高保真远程健康监测
- 批准号:
2317148 - 财政年份:2023
- 资助金额:
$ 57.19万 - 项目类别:
Standard Grant
Towards Robust Long-Term Infrastructure Asset Management under Deep Uncertainty
在高度不确定性下实现稳健的长期基础设施资产管理
- 批准号:
RGPIN-2022-04591 - 财政年份:2022
- 资助金额:
$ 57.19万 - 项目类别:
Discovery Grants Program - Individual
FAI: Advancing Deep Learning Towards Spatial Fairness
FAI:推进深度学习迈向空间公平
- 批准号:
2147195 - 财政年份:2022
- 资助金额:
$ 57.19万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Towards Robust Deep Learning Computing on GPUs
合作研究:SHF:小型:在 GPU 上实现稳健的深度学习计算
- 批准号:
2301940 - 财政年份:2022
- 资助金额:
$ 57.19万 - 项目类别:
Standard Grant