Periodic Kardar-Parisi-Zhang (KPZ) Universality
周期性 Kardar-Parisi-Zhang (KPZ) 普遍性
基本信息
- 批准号:1953687
- 负责人:
- 金额:$ 16.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many random growth models, such as fire propagation or bacterial colony growth are believed to share certain universal pattern. Analyzing the mathematical mechanism of such pattern has been an active research area in the last twenty years. Due to the breakthrough progress in the probability and mathematical physics community, an increasing number of models have been successfully analyzed and they are found to share the same large time limiting behaviors. These models are called to belong to the Kardar-Parisi-Zhang (KPZ) universality class, named after Mehran Kardar, Giorgio Parisi, and Yi-Cheng Zhang who introduced a non-linear stochastic partial differential equation, the so-called KPZ equation, to describe the random growing interfaces. This project aims to study models in the KPZ universality class with spatial periodicity. One goal of this project is to analyze the periodic solvable growth models and understand their universal limiting behaviors under different parameter scales by probing the structure and asymptotics of the Bethe roots associated with these models. The other goal is to develop a new direction to approach the KPZ universality class in the infinite space by obtaining exact results of periodic solvable growth models when the period becomes sufficiently large.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多随机生长模型,如火的传播或细菌菌落的生长,被认为具有一定的普遍规律。分析这种模式的数学机制是近二十年来一个活跃的研究领域。由于概率论和数理物理界的突破性进展,越来越多的模型被成功地分析,并发现它们具有相同的大时间限制行为。这些模型被称为属于Kardar- paris -Zhang (KPZ)通称类,以Mehran Kardar、Giorgio Parisi和Yi-Cheng Zhang的名字命名,他们引入了一个非线性随机偏微分方程,即所谓的KPZ方程,来描述随机生长界面。本课题旨在研究具有空间周期性的KPZ通用性类模型。本课题的目标之一是分析周期可解增长模型,并通过探索与这些模型相关的贝特根的结构和渐近性来理解它们在不同参数尺度下的普遍极限行为。另一个目标是通过获得周期变得足够大时周期可解增长模型的精确结果,开辟一个新的方向来接近无限空间中的KPZ普适性类。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
One-point distribution of the geodesic in directed last passage percolation
定向最后通道渗滤中测地线的单点分布
- DOI:10.1007/s00440-022-01123-2
- 发表时间:2022
- 期刊:
- 影响因子:2
- 作者:Liu, Zhipeng
- 通讯作者:Liu, Zhipeng
Limiting one-point distribution of periodic TASEP
周期性 TASEP 的限制单点分布
- DOI:10.1214/21-aihp1171
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Baik, Jinho;Liu, Zhipeng;Silva, Guilherme L.
- 通讯作者:Silva, Guilherme L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhipeng Liu其他文献
Systematic quantification of histological patterns shows accuracy in reflecting cirrhotic remodeling
组织学模式的系统量化显示了反映肝硬化重塑的准确性
- DOI:
10.1111/jgh.13722 - 发表时间:
2017-09 - 期刊:
- 影响因子:4.1
- 作者:
Yan Wang;Wei Huang;Ruhua Li;Zhaoqiang Yun;Youfu Zhu;Jinlian Yang;Hailin Liu;Zhipeng Liu;Qianjing Feng;Jinlin Hou - 通讯作者:
Jinlin Hou
A Preliminary Study on Non-Invasive Detection of Electrical Stimulation Current Based on Magneto-Acoustic Effect
基于磁声效应的电刺激电流无创检测初步研究
- DOI:
10.1109/tnsre.2022.3186801 - 发表时间:
2022-06 - 期刊:
- 影响因子:0
- 作者:
Wenshu Mai;Yuheng Wang;Tao Yin;Shunqi Zhang;Zhipeng Liu - 通讯作者:
Zhipeng Liu
The Role of Recitation in the Process of English Learning for College Students of Science and Engineering
背诵在理工科大学生英语学习过程中的作用
- DOI:
10.3968/12106 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Zhipeng Liu - 通讯作者:
Zhipeng Liu
Research on processing methods to improve the signal-to-noise ratio of a magnetoacoustic signal
提高磁声信号信噪比的处理方法研究
- DOI:
10.1016/j.bspc.2020.101955 - 发表时间:
2020-07 - 期刊:
- 影响因子:5.1
- 作者:
Shunqi Zhang;Ren Ma;Xiaoqing Zhou;Tao Yin;Zhipeng Liu - 通讯作者:
Zhipeng Liu
Characterization of Fibrosis Changes in Chronic Hepatitis C Patients after Virological Cure: A Systematic Review with Meta-analysis.
病毒学治愈后慢性丙型肝炎患者纤维化变化的特征:系统评价与荟萃分析。
- DOI:
10.1111/jgh.13500 - 发表时间:
2016 - 期刊:
- 影响因子:4.1
- 作者:
Zhipeng Liu;Xuewu Wei;Ting Chen;Chuhong Huang;Haiyan Liu;Yan Wang - 通讯作者:
Yan Wang
Zhipeng Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhipeng Liu', 18)}}的其他基金
Exact Formulas for the KPZ Fixed Point and the Directed Landscape
KPZ 不动点和有向景观的精确公式
- 批准号:
2246683 - 财政年份:2023
- 资助金额:
$ 16.86万 - 项目类别:
Standard Grant
相似海外基金
The Kardar-Parisi-Zhang (KPZ) Universality of Random Growing Interfaces
随机增长界面的 Kardar-Parisi-Zhang (KPZ) 普遍性
- 批准号:
2321493 - 财政年份:2023
- 资助金额:
$ 16.86万 - 项目类别:
Standard Grant
Kardar-Parisi-Zhang universality for large scale interacting systems
大规模交互系统的 Kardar-Parisi-Zhang 通用性
- 批准号:
22KJ0874 - 财政年份:2023
- 资助金额:
$ 16.86万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Kardar-Parisi-Zhang Universality Class, Integrable Differential Equations, and Spin Glass
Kardar-Parisi-Zhang 普适类、可积微分方程和自旋玻璃
- 批准号:
2246790 - 财政年份:2023
- 资助金额:
$ 16.86万 - 项目类别:
Standard Grant
古典系・量子系におけるKardar-Parisi-Zhang普遍法則の統一的理解の構築
建立对经典和量子系统中卡达尔-帕里西-张普遍定律的统一理解
- 批准号:
23K17664 - 财政年份:2023
- 资助金额:
$ 16.86万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
The Kardar-Parisi-Zhang (KPZ) Universality of Random Growing Interfaces
随机增长界面的 Kardar-Parisi-Zhang (KPZ) 普遍性
- 批准号:
1953859 - 财政年份:2020
- 资助金额:
$ 16.86万 - 项目类别:
Standard Grant
Career: Various Geometric Aspects of Kardar-Parisi-Zhang Universality: Fractal Dimensions, Noise Sensitivity, Line Ensembles, and Large Deviations.
职业:Kardar-Parisi-Zhang 普遍性的各个几何方面:分形维数、噪声敏感性、线系综和大偏差。
- 批准号:
1945172 - 财政年份:2020
- 资助金额:
$ 16.86万 - 项目类别:
Continuing Grant
Structures and universalities around the Kardar-Parisi-Zhang equation
Kardar-Parisi-Zhang 方程的结构和普适性
- 批准号:
EP/R024456/1 - 财政年份:2018
- 资助金额:
$ 16.86万 - 项目类别:
Fellowship
Random polymers and the Kardar-Parisi-Zhang universality class
无规聚合物和 Kardar-Parisi-Zhang 通用类
- 批准号:
502287-2017 - 财政年份:2018
- 资助金额:
$ 16.86万 - 项目类别:
Postdoctoral Fellowships
Random polymers and the Kardar-Parisi-Zhang universality class
无规聚合物和 Kardar-Parisi-Zhang 通用类
- 批准号:
502287-2017 - 财政年份:2017
- 资助金额:
$ 16.86万 - 项目类别:
Postdoctoral Fellowships
The Kardar-Parisi-Zhang equation and universality class
Kardar-Parisi-Zhang 方程和普适性类
- 批准号:
203087-2012 - 财政年份:2016
- 资助金额:
$ 16.86万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




