Imaging and Quantifying Lipid Membrane Asymmetry in Living Cells with Sum-Frequency Vibrational Microscopy

使用和频振动显微镜对活细胞中的脂质膜不对称性进行成像和定量

基本信息

  • 批准号:
    1953975
  • 负责人:
  • 金额:
    $ 47.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

In this project funded by the Chemical Structure, Dynamics and Mechanisms A (CSDM-A), Chemistry of Life Processes (CLP) and Chemical Measurement and Imaging (CMI) Programs of the Chemistry Division, Professors John Conboy and Markus Babst of the University of Utah are exploring the structure of cell membranes. Cell membranes are composed of various types of molecules, but their major constituents are lipid molecules, which themselves are composed of long oily hydrocarbon chains that avoid contact with water (hydrophobic), and one end that contains phosphorus and or oxygen atoms that make that end prefer to be in the presence of water (hydrophilic). Cell membranes are actually two layers of lipid molecules; the long hydrophobic chains on the two layers face each other inside the membrane, and the hydrophilic head groups are exposed to watery environments inside and outside the cell. In living cells, the membrane can be asymmetric; in other words, the number and specific kinds of lipids in the inner and outer lipid layers are different. The current theory of cell membrane structure assumes that this asymmetry is due to the action of another class of molecules present in cell membranes called flippases and floppases. These are proteins that are thought to control movement of lipid molecules from one side of the cell membrane to the other. Professors Conboy and Babst hypothesize that membrane asymmetry can arise without flippases and floppases in the membrane, and simply through inner membrane wall interactions with proteins inside the cell. In order to test their hypothesis, Professors Conboy and Babst are using a special technique called sum-frequency vibrational microscopy that can reveal the molecular structure of the lipid molecules in a membrane as well as the motion of these molecules from one layer to the other. One goal of the project is to directly measure and generate images of lipid asymmetry in living cells for the first time. This research project seeks to reveal new fundamental insights into how large complex molecules interact with each other to form even larger assembled structures. The findings of this project are likely to influence how we think about living systems. This project is the vehicle for advanced training of two graduate students and two undergraduate researchers. In addition to formal training activities, the Conboy and Babst research groups are participating in public outreach activities to bring science to a wider audience.Our current view of the cell membrane was established in the early 1970’s by Singer and Nicolson. The fluid-mosaic model they proposed portrays the membrane as a “liquid-like” bilayer of lipids, cholesterol, and proteins, exhibiting rapid and free diffusion in the two dimensions parallel to the membrane surfaces. In stark contrast, the exchange of lipids between the leaflets of a bilayer was presumed to be prohibited by the large energetic barrier associated with translocating the hydrophilic lipid headgroup, through the hydrophobic membrane core. This static picture of lipid translocation (or flip-flop) has been a long-held belief in the study of membrane dynamics and is the basis for the current theories regarding the bilateral organization of cell membrane components, particularly phosphatidylserine (PS) asymmetry. We hypothesize that spontaneous PS flip-flop is a common, facile process in vivo. This prediction raises the question: How does the cell maintain PS asymmetry in the plasma membrane? Our hypothesis is that in vivo PS localization to the cytosolic leaflet of the membrane is driven by electrostatic interactions with cytoplasmic proteins, in particular, the proteins comprising the cytoskeleton. Our proposed model of PS asymmetry and the currently accepted view differ in that our model suggests a very dynamic membrane system, over the more conventional “static” picture of lipid asymmetry. This dynamic behavior changes the current theories regarding the creation and maintenance of lipid asymmetry; however, it also simplifies and unifies the explanation of many known lipid phenomena. Our hypothesis is being tested by construction of a unique sum-frequency vibrational microscope capable of directly quantifying and imaging lipid asymmetry in living cells and measuring native lipid flip-flop in vivo for the first time. The students engaged in this project are gaining knowledge and experience in rigorous physical and biophysical concepts as well as advanced imaging techniques based on nonlinear optical processes. Outreach activities include engagement of K-12 schools in the Salt Lake Valley, especially Catholic schools that serve higher percentages of underrepresented groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学结构、动力学和机理A (CSDM-A)、生命过程化学(CLP)和化学测量与成像(CMI)项目资助下,犹他大学的John Conboy教授和Markus Babst教授正在探索细胞膜的结构。细胞膜由各种类型的分子组成,但其主要成分是脂质分子,脂质分子本身由避免与水接触的长油性烃链组成(疏水),一端含有磷和/或氧原子,使其更倾向于与水存在(亲水)。细胞膜实际上是两层脂质分子;两层膜上的长疏水链在膜内彼此面对,亲水头基团暴露在细胞内外的水环境中。在活细胞中,细胞膜可以是不对称的;换句话说,内脂层和外脂层中脂质的数量和具体种类是不同的。目前的细胞膜结构理论认为,这种不对称是由于细胞膜上存在的另一类分子的作用,称为翻转酶和翻转酶。这些蛋白质被认为控制脂质分子从细胞膜的一边到另一边的运动。Conboy教授和Babst教授假设,膜不对称可以在膜上没有翻转酶和翻转酶的情况下产生,而只是通过细胞膜内壁与细胞内蛋白质的相互作用产生。为了验证他们的假设,Conboy教授和Babst教授正在使用一种叫做和频振动显微镜的特殊技术,这种技术可以揭示膜中脂质分子的分子结构以及这些分子从一层到另一层的运动。该项目的目标之一是首次直接测量和生成活细胞中脂质不对称的图像。该研究项目旨在揭示大型复杂分子如何相互作用以形成更大的组装结构的新的基本见解。这个项目的发现可能会影响我们对生命系统的看法。该项目为两名研究生和两名本科生的高级培训提供了载体。除了正式的培训活动之外,Conboy和Babst研究小组正在参与公共宣传活动,以便将科学带给更广泛的受众。我们目前对细胞膜的看法是由辛格和尼科尔森在20世纪70年代初建立的。他们提出的流体镶嵌模型将膜描绘成脂质、胆固醇和蛋白质的“液体状”双层,在平行于膜表面的二维空间中表现出快速和自由的扩散。与之形成鲜明对比的是,双分子膜小叶之间的脂质交换被认为是被与通过疏水膜核心转运亲水性脂质头基团相关的巨大能量屏障所禁止的。这种脂质易位(或翻转)的静态图景一直是膜动力学研究的一个长期观点,也是当前关于细胞膜组分双边组织的理论基础,特别是磷脂酰丝氨酸(PS)不对称。我们假设自发的PS翻转是一个常见的,容易的过程在体内。这一预测提出了一个问题:细胞是如何在质膜中维持PS不对称的?我们的假设是,体内PS定位到细胞膜的胞质小叶是由与细胞质蛋白,特别是构成细胞骨架的蛋白质的静电相互作用驱动的。我们提出的PS不对称模型与目前公认的观点不同之处在于,我们的模型表明了一个非常动态的膜系统,而不是更传统的脂质不对称的“静态”图景。这种动态行为改变了目前关于脂质不对称产生和维持的理论;然而,它也简化和统一了许多已知脂质现象的解释。我们的假设正在通过构建一种独特的和频振动显微镜进行验证,该显微镜能够直接量化和成像活细胞中的脂质不对称,并首次测量体内天然脂质翻转。参与该项目的学生将获得严格的物理和生物物理概念以及基于非线性光学过程的先进成像技术的知识和经验。拓展活动包括参与盐湖城山谷的K-12学校,特别是天主教学校,这些学校为未被充分代表的群体提供更高比例的服务。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Influence of very-long-chain polyunsaturated fatty acids on membrane structure and dynamics
  • DOI:
    10.1016/j.bpj.2022.06.015
  • 发表时间:
    2022-07-19
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Cheng, Victoria;Rallabandi, Rameshu;Conboy, John C.
  • 通讯作者:
    Conboy, John C.
Inhibitory Effect of Lanthanides on Native Lipid Flip-Flop
镧系元素对天然脂质触发器的抑制作用
  • DOI:
    10.1021/acs.jpcb.2c04039
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cheng, Victoria;Conboy, John C.
  • 通讯作者:
    Conboy, John C.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Conboy其他文献

Phosphatidylglycerol Asymmetry and Translocation in Lipid Membranes
  • DOI:
    10.1016/j.bpj.2014.11.017
  • 发表时间:
    2015-01-27
  • 期刊:
  • 影响因子:
  • 作者:
    John Conboy
  • 通讯作者:
    John Conboy
Mechanisms that link promoter choice with downstream alternative splicing in the protein 4.1R gene
  • DOI:
    10.1016/j.bcmd.2006.10.032
  • 发表时间:
    2007-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Marilyn Parra;Jeff Tan;Narla Mohandas;John Conboy
  • 通讯作者:
    John Conboy

John Conboy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Conboy', 18)}}的其他基金

A Self-Contained Optical Heterodyned Second Harmonic Sensor
一种独立式光学外差二次谐波传感器
  • 批准号:
    2304682
  • 财政年份:
    2023
  • 资助金额:
    $ 47.38万
  • 项目类别:
    Standard Grant
Developing a Small-Molecule Immunoassay
开发小分子免疫分析
  • 批准号:
    1608550
  • 财政年份:
    2016
  • 资助金额:
    $ 47.38万
  • 项目类别:
    Standard Grant
Advancing the Measurement of Lipid Transbilayer Exchange
推进脂质跨双层交换的测量
  • 批准号:
    1402901
  • 财政年份:
    2014
  • 资助金额:
    $ 47.38万
  • 项目类别:
    Standard Grant
Lipid Asymmetry: A New View on Lipid Dynamics and Membrane Structure
脂质不对称:脂质动力学和膜结构的新观点
  • 批准号:
    1110351
  • 财政年份:
    2011
  • 资助金额:
    $ 47.38万
  • 项目类别:
    Standard Grant
Physical and Chemical Directors of Molecular Asymmetry in Lipid Bilayers
脂质双层分子不对称的物理和化学指导
  • 批准号:
    0808923
  • 财政年份:
    2008
  • 资助金额:
    $ 47.38万
  • 项目类别:
    Continuing Grant
Sum-Frequency Vibrational Spectroscopy Study of Membrane Asymmetry and the Transbilayer Movement of Lipids
膜不对称性和脂质跨双层运动的和频振动光谱研究
  • 批准号:
    0515940
  • 财政年份:
    2005
  • 资助金额:
    $ 47.38万
  • 项目类别:
    Continuing Grant

相似海外基金

Quantifying climate change impacts for wetlands in agricultural landscapes
量化气候变化对农业景观中湿地的影响
  • 批准号:
    DE240100477
  • 财政年份:
    2024
  • 资助金额:
    $ 47.38万
  • 项目类别:
    Discovery Early Career Researcher Award
MULTI-STRESS: Quantifying the impacts of multiple stressors in multiple dimensions to improve ecological forecasting
多重压力:在多个维度量化多种压力源的影响,以改进生态预测
  • 批准号:
    NE/Z000130/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.38万
  • 项目类别:
    Research Grant
CAREER: Quantifying congruences between modular forms
职业:量化模块化形式之间的同余性
  • 批准号:
    2337830
  • 财政年份:
    2024
  • 资助金额:
    $ 47.38万
  • 项目类别:
    Continuing Grant
Collaborative Research: BoCP-Implementation: Quantifying the response of biodiverse freshwater ecosystems to abrupt and progressive environmental change
合作研究:BoCP-实施:量化生物多样性淡水生态系统对突然和渐进的环境变化的响应
  • 批准号:
    2325895
  • 财政年份:
    2024
  • 资助金额:
    $ 47.38万
  • 项目类别:
    Standard Grant
CAREER: Quantifying Genetic and Ecological Constraints on the Evolution of Thermal Performance Curves
职业:量化热性能曲线演变的遗传和生态约束
  • 批准号:
    2337107
  • 财政年份:
    2024
  • 资助金额:
    $ 47.38万
  • 项目类别:
    Continuing Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234522
  • 财政年份:
    2024
  • 资助金额:
    $ 47.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234523
  • 财政年份:
    2024
  • 资助金额:
    $ 47.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234524
  • 财政年份:
    2024
  • 资助金额:
    $ 47.38万
  • 项目类别:
    Standard Grant
Quantifying the effect of sediment microbial activity in facilitating silica sequestration during early diagenesis (QUALIFIED)
量化早期成岩过程中沉积物微生物活性对促进二氧化硅固存的影响(合格)
  • 批准号:
    2319429
  • 财政年份:
    2024
  • 资助金额:
    $ 47.38万
  • 项目类别:
    Standard Grant
Quantifying the benefits of regenerative agricultural practices
量化再生农业实践的好处
  • 批准号:
    BB/Z514342/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.38万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了