Probabilistic Combinatorics

概率组合学

基本信息

  • 批准号:
    1954035
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

The project focuses on a number of interrelated problems, all essentially combinatorial (meaning, in particular, that they usually deal with finite structures), but with connections to other areas. Though much of the PI's work has ties to other disciplines---and some of it has had unanticipated applied consequences---the emphasis here is on what seems most interesting from a mathematical standpoint. The PI has long been interested in work that cuts across mathematical boundaries. He has had success both in applying ideas from other mathematical disciplines (algebra, geometry, topology, probability, Fourier analysis, information theory) to settle well-known combinatorial problems, and, on the other hand, in bringing combinatorial ideas to bear on problems from other areas (e.g. geometry, computer science, probability, statistical mechanics). He has---as in this project---most often been interested in simple but seemingly basic questions with histories of resisting solution, motivated especially by the idea that tackling such questions necessarily forces one to go beyond existing methods. In addition the project provides research training opportunities for graduate students.The project treats combinatorial topics representing some of the PI's main current interests, most with some probabilistic aspect. A common setting is the collection of subsets of a finite set, or (the same object viewed differently) the "Hamming cube" of binary strings of a given length. The more probabilistic questions are largely concerned with thresholds and/or dependence among events; the less probabilistic ones belong to "extremal" combinatorics. All involve notions that have been at the hearts of their respective areas for decades. For example, thresholds---roughly, the intensities at which various phenomena first appear in a random system---have been central to probabilistic combinatorics and related parts of statistical physics since about 1960, and the PI's most consistent focus in recent years. Intersection properties of set systems and isoperimetric problems (these are among the less probabilistic topics) are of similar vintage and centrality.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目专注于一些相互关联的问题,这些问题基本上都是组合的(特别是指它们通常处理有限的结构),但与其他领域的联系。尽管PI的许多工作与其他学科有联系-其中一些产生了意想不到的应用后果-这里的重点是从数学角度看最有趣的东西。长期以来,PI一直对跨越数学界限的工作感兴趣。他成功地运用了其他数学学科(代数、几何、拓扑、概率、傅立叶分析、信息论)的思想来解决著名的组合问题,另一方面,也成功地将组合思想应用于其他领域(如几何、计算机科学、概率、统计力学)的问题。他-就像在这个项目中-最经常对简单但看似基本的问题感兴趣,这些问题有抵制解决的历史,特别是因为解决这些问题必然会迫使一个人超越现有方法的想法。此外,该项目还为研究生提供了研究培训机会。该项目处理代表PI当前主要兴趣的一些组合主题,大多数带有一些概率方面的内容。一种常见的设置是有限集合的子集的集合,或者(从不同的角度来看相同的对象)给定长度的二进制字符串的“汉明立方体”。概率较高的问题主要与阈值和/或事件之间的相关性有关;概率较低的问题属于“极端”组合学。所有这些都涉及几十年来一直处于各自领域核心的概念。例如,阈值-粗略地说,各种现象在随机系统中首次出现的强度-自1960年以来一直是概率组合学和统计物理学相关部分的核心,也是近年来PI最一致的焦点。集合系统的交集性质和等周问题(这些属于不太可能的主题)具有相似的年代性和中心性。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Disproof of a conjecture of Alon and Spencer
反驳阿隆和斯宾塞的猜想
An isoperimetric inequality for the Hamming cube and some consequences
汉明立方体的等周不等式和一些后果
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffry Kahn其他文献

A polyomino with no stochastic function
  • DOI:
    10.1007/bf02579218
  • 发表时间:
    1984-06-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Jeffry Kahn;Michael Saks
  • 通讯作者:
    Michael Saks

Jeffry Kahn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffry Kahn', 18)}}的其他基金

Problems in Probabilistic Combinatorics
概率组合学问题
  • 批准号:
    1501962
  • 财政年份:
    2015
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Thresholds and asymptotics
阈值和渐近
  • 批准号:
    1201337
  • 财政年份:
    2012
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Correlation Problems and Combinatorial Applications of Entropy
熵的相关问题和组合应用
  • 批准号:
    0701175
  • 财政年份:
    2007
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Discrete Problems
离散问题
  • 批准号:
    0200856
  • 财政年份:
    2002
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Discrete Problems
离散问题
  • 批准号:
    9970433
  • 财政年份:
    1999
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Behavior of Large Combinatorial Systems
数学科学:大型组合系统的行为
  • 批准号:
    9622966
  • 财政年份:
    1996
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Asymptotic Aspects of Matching, Covering, and Coloring Problems
数学科学:匹配、覆盖和着色问题的渐近方面
  • 批准号:
    9303719
  • 财政年份:
    1993
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Some Problems (mostly) on Finite Sets
数学科学:有限集上的一些问题(大部分)
  • 批准号:
    9003376
  • 财政年份:
    1990
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Combinatorial Problems
数学科学:组合问题
  • 批准号:
    8703556
  • 财政年份:
    1987
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Inquiries in Discrete Mathematics
数学科学:离散数学探究
  • 批准号:
    8502944
  • 财政年份:
    1985
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant

相似海外基金

Probabilistic and Extremal Combinatorics
概率和极值组合学
  • 批准号:
    2246907
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
CAREER: Problems in Extremal and Probabilistic Combinatorics
职业:极值和概率组合问题
  • 批准号:
    2146406
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Extremal and Probabilistic Combinatorics
极值和概率组合学
  • 批准号:
    2763343
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Studentship
Algebraic and Probabilistic Methods in Extremal Combinatorics
极值组合中的代数和概率方法
  • 批准号:
    2100157
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Questions and Methods in Probabilistic Combinatorics
概率组合学中的问题和方法
  • 批准号:
    1953990
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Applications of probabilistic combinatorics and extremal set theory to deriving bounds in classical and quantum coding theory
概率组合学和极值集合论在经典和量子编码理论中推导界限的应用
  • 批准号:
    20K11668
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algebraic and Probabilistic Methods in Extremal Combinatorics
极值组合中的代数和概率方法
  • 批准号:
    1953772
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Probabilistic Combinatorics
概率组合学
  • 批准号:
    2260624
  • 财政年份:
    2019
  • 资助金额:
    $ 36万
  • 项目类别:
    Studentship
Analytic and Probabilistic Combinatorics, and Long Cycles in Graphs
分析和概率组合学以及图中的长周期
  • 批准号:
    RGPIN-2015-04010
  • 财政年份:
    2019
  • 资助金额:
    $ 36万
  • 项目类别:
    Discovery Grants Program - Individual
The Probabilistic Method in Combinatorics
组合学中的概率方法
  • 批准号:
    1954395
  • 财政年份:
    2019
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了