Disjoint Paths in Graphs and Coloring
图形和着色中的不相交路径
基本信息
- 批准号:1954134
- 负责人:
- 金额:$ 16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many real word problems concern large systems that may be modeled by graphs. Those systems include communication networks, social networks, and neural networks. To analyze those systems, it is important to understand the structure of the underlying graphs, in terms of the existence of certain structure, connectivity, and partitions. It is often the case that methods for studying graph structures lead to efficient algorithms. This project studies structure of graphs with certain forbidden substructures, as well as related problems on connectivity and coloring. This project also contains research problems that are suitable for students. Determining the chromatic number of an arbitrary graph is difficult. However, one might be able to obtain a reasonable bound on the chromatic numbers of graphs not containing a given structure, such as subdivisions of a graph. The PI will work on an old conjecture of Hajos: Graphs without K_5-subdivisions are 4-colorable. If true, this would be a generalization of the well known Four Color Theorem. The PI will study the structure of such graphs, as well as its connections to connectivity problems about disjoint paths in graphs, including a long standing conjecture of Lovasz on removable paths.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多现实世界中的问题都与可以用图形建模的大系统有关。这些系统包括通信网络、社交网络和神经网络。要分析这些系统,重要的是要了解底层图形的结构,即某些结构、连通性和分区的存在。研究图结构的方法通常会导致高效的算法。本项目研究具有某些禁止子结构的图的结构,以及有关连通性和着色的问题。这个项目还包含了适合学生的研究问题。确定任意图的色数是很困难的。然而,人们可能能够得到不包含给定结构的图的色数的一个合理的界,例如图的细分。PI将研究Hajos的一个古老的猜想:没有K_5-细分的图是4-可染的。如果是真的,这将是著名的四色定理的推广。PI将研究这种图的结构,以及它与图中不相交路径的连通性问题的联系,包括Lovasz关于可移除路径的长期猜想。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rainbow Perfect Matchings for 4-Uniform Hypergraphs
- DOI:10.1137/21m1442383
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Hongliang Lu;Yan Wang;Xingxing Yu
- 通讯作者:Hongliang Lu;Yan Wang;Xingxing Yu
Partitioning digraphs with outdegree at least 4
- DOI:10.1002/jgt.22715
- 发表时间:2020-06
- 期刊:
- 影响因子:0.9
- 作者:Guanwu Liu;Xingxing Yu
- 通讯作者:Guanwu Liu;Xingxing Yu
Number of Hamiltonian Cycles in Planar Triangulations
平面三角剖分中的哈密顿循环数
- DOI:10.1137/20m1366551
- 发表时间:2021
- 期刊:
- 影响因子:0.8
- 作者:Liu, Xiaonan;Yu, Xingxing
- 通讯作者:Yu, Xingxing
Polynomial χ-binding functions for t-broom-free graphs
无 t-broom 图的多项式 Ï 绑定函数
- DOI:10.1016/j.jctb.2023.04.005
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Liu, Xiaonan;Schroeder, Joshua;Wang, Zhiyu;Yu, Xingxing
- 通讯作者:Yu, Xingxing
Tutte paths and long cycles in circuit graphs
电路图中的 Tutte 路径和长周期
- DOI:10.1016/j.jctb.2022.07.006
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Wigal, Michael C.;Yu, Xingxing
- 通讯作者:Yu, Xingxing
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xingxing Yu其他文献
Subdivisions of K5 in graphs containing K2, 3
包含 K2、3 的图中 K5 的细分
- DOI:
10.1016/j.jctb.2014.12.008 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
K. Kawarabayashi;Jie Ma;Xingxing Yu - 通讯作者:
Xingxing Yu
On judicious bisections of graphs
关于图的明智二分
- DOI:
10.1016/j.jctb.2014.01.004 - 发表时间:
2014-05 - 期刊:
- 影响因子:0
- 作者:
许宝刚;Xingxing Yu - 通讯作者:
Xingxing Yu
Non-separating cycles and discrete Jordan curves
- DOI:
10.1016/0095-8956(92)90072-6 - 发表时间:
1992 - 期刊:
- 影响因子:0
- 作者:
Xingxing Yu - 通讯作者:
Xingxing Yu
The Kelmans-Seymour conjecture I: Special separations
凯尔曼斯-西摩猜想 I:特殊分离
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Dawei He;Yan Wang;Xingxing Yu - 通讯作者:
Xingxing Yu
Cycles in 4-connected planar graphs
4 连通平面图中的循环
- DOI:
10.1016/j.ejc.2003.04.003 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Guantao Chen;G. Fan;Xingxing Yu - 通讯作者:
Xingxing Yu
Xingxing Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xingxing Yu', 18)}}的其他基金
Research on Graph Coloring and Graph Structure
图着色与图结构研究
- 批准号:
2348702 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Conference: Atlanta Lecture Series in Combinatorics and Graph Theory
会议:亚特兰大组合学和图论系列讲座
- 批准号:
2321249 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
Topological Minors, Connectivity, and Partitions
拓扑次要、连通性和分区
- 批准号:
1600738 - 财政年份:2016
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
Atlanta Lecture Series in Combinatorics and Graph Theory, 2014/2015
亚特兰大组合学和图论系列讲座,2014/2015
- 批准号:
1400055 - 财政年份:2014
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: Atlanta Lecture Series on Combinatorics and Graph Theory
合作研究:亚特兰大组合学和图论系列讲座
- 批准号:
1001743 - 财政年份:2010
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Some Problems Related to Graph Connectivity
与图连通性相关的一些问题
- 批准号:
0245530 - 财政年份:2003
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Mathematical Sciences: Cycles and Subdivisions in Graphs
数学科学:图中的循环和细分
- 批准号:
9301909 - 财政年份:1993
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
相似海外基金
Parity of Paths and Cycles with Specified Patterns in Edge-Coloured Complete Graphs
边色完全图中路径和循环与指定模式的奇偶性
- 批准号:
573382-2022 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
University Undergraduate Student Research Awards
Existence of Specific Paths, Cycles, and Colorings in Graphs and Hypergraphs
图和超图中特定路径、循环和着色的存在性
- 批准号:
2153507 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Constrained Shortest Paths in Weighted Graphs
加权图中的约束最短路径
- 批准号:
551540-2020 - 财政年份:2020
- 资助金额:
$ 16万 - 项目类别:
University Undergraduate Student Research Awards
Learning Active Paths in Streaming Graphs
学习流图中的主动路径
- 批准号:
550090-2020 - 财政年份:2020
- 资助金额:
$ 16万 - 项目类别:
University Undergraduate Student Research Awards
Characterization for tractability of finding paths in graphs based on forbidden structures
基于禁止结构的图中寻找路径的易处理性表征
- 批准号:
16H06931 - 财政年份:2016
- 资助金额:
$ 16万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Convexity, distance invariants and longest paths in graphs
图中的凸性、距离不变量和最长路径
- 批准号:
198281-2011 - 财政年份:2015
- 资助金额:
$ 16万 - 项目类别:
Discovery Grants Program - Individual
Convexity, distance invariants and longest paths in graphs
图中的凸性、距离不变量和最长路径
- 批准号:
198281-2011 - 财政年份:2014
- 资助金额:
$ 16万 - 项目类别:
Discovery Grants Program - Individual
AF: Small: Counting and Sampling Cuts and Paths in Planar and Lattice Graphs
AF:小:对平面和格子图中的切割和路径进行计数和采样
- 批准号:
1319987 - 财政年份:2013
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Convexity, distance invariants and longest paths in graphs
图中的凸性、距离不变量和最长路径
- 批准号:
198281-2011 - 财政年份:2013
- 资助金额:
$ 16万 - 项目类别:
Discovery Grants Program - Individual
Convexity, distance invariants and longest paths in graphs
图中的凸性、距离不变量和最长路径
- 批准号:
198281-2011 - 财政年份:2012
- 资助金额:
$ 16万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




