Disjoint Paths and Hamilton Cycles
不相交路径和哈密顿循环
基本信息
- 批准号:9531824
- 负责人:
- 金额:$ 6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-08-01 至 2000-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9531824 Yu This investigation is a continuation of previously funded NSF projects. The investigator has solved several important problems in graph theory, some in collaboration, including a 1970 conjecture of Grunbaum, a 1972 conjecture of Nash-Williams, and a 1975 conjecture of Plummer. The highlights are the solution of a conjecture of Thomassen about Hamilton cycles in locally planar triangulations of surfaces and the solution of a conjecture of Robertson and Thomas; both have opened up new directions for research. The investigator will extend the techniques of finding "Tutte paths" and cutting surfaces developed in solving the above mentioned problems to attack some other important problems about Hamilton cycles in graphs in surfaces. One such example is an old conjecture of Barnette, which states that every 3-connected cubic plane graph in which each face is bounded by at most 6 edges contains a Hamilton cycle. This problem is related to molecular structures of certain organic compounds in Chemistry. Another problem is the conjecture of Grunbaum (1970) and Nash-Williams (1973) that every 4-connected toroidal graph contains a Hamilton cycle. The investigator will also work on a conjecture of Dirac (1964) about K5-subdivisions. Dirac's conjecture is equivalent to the conjecture that every 5-connected non-planar graph contains a K5-connected subdivision. One approach is to characterize all 4-connected graphs containing a K4-subdivision with prescribed degree three vertices. This problem is related to designing communication networks. Finally, the investigator was able to solve the rooted K4 problem for planar graphs; he would like to extend the techniques used for planar graphs to attack the general rooted K4 problem. This research is in the general area of Combinatorics. One of the goals of Combinatorics is to find efficient methods of studying how discrete collections of objects can be arranged. The behavior of discrete systems is extremely important to modern communications. For example, the design of large networks, such as those occurring in telephone systems, and the design of algorithms in computer science deal with discrete sets of objects, and this makes use of combinatorial research.
9531824 Yu这项研究是以前资助的NSF项目的延续。研究者已经解决了几个重要的问题,在图论中,一些在合作,包括1970年猜想的Grunbaum,1972年猜想的纳什-威廉姆斯,和1975年猜想的普卢默。亮点是解决的一个猜想的哈密尔顿汉密尔顿周期在局部平面三角形的表面和解决的一个猜想的罗伯逊和托马斯,都开辟了新的研究方向。研究者将把在解决上述问题中发展起来的寻找“Tutte路”和切割曲面的技术推广到解决面中图的汉密尔顿圈的其他一些重要问题。一个这样的例子是巴内特的一个古老猜想,它指出每个3连通的三次平面图,其中每个面最多由6条边包围,包含一个汉密尔顿圈。这个问题与化学中某些有机化合物的分子结构有关。另一个问题是Grunbaum(1970)和Nash-Williams(1973)的猜想,即每个4-连通环形图都包含一个汉密尔顿圈。研究者还将研究狄拉克(1964)关于K5-细分的猜想。Dirac猜想等价于猜想每个5-连通非平面图都含有一个K5-连通剖分。一种方法是刻画所有含有指定度为三个顶点的K4-剖分的4-连通图。这个问题与设计通信网络有关。最后,研究人员能够解决平面图的有根K4问题;他想扩展平面图的技术来攻击一般的有根K4问题。 这项研究是在组合数学的一般领域。组合数学的目标之一是找到有效的方法来研究如何安排对象的离散集合。 离散系统的行为对现代通信极为重要。 例如,大型网络的设计,如电话系统中的网络设计,以及计算机科学中的算法设计,都要处理离散的对象集,这就需要使用组合研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xingxing Yu其他文献
Non-separating cycles and discrete Jordan curves
- DOI:
10.1016/0095-8956(92)90072-6 - 发表时间:
1992 - 期刊:
- 影响因子:0
- 作者:
Xingxing Yu - 通讯作者:
Xingxing Yu
Subdivisions of K5 in graphs containing K2, 3
包含 K2、3 的图中 K5 的细分
- DOI:
10.1016/j.jctb.2014.12.008 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
K. Kawarabayashi;Jie Ma;Xingxing Yu - 通讯作者:
Xingxing Yu
On judicious bisections of graphs
关于图的明智二分
- DOI:
10.1016/j.jctb.2014.01.004 - 发表时间:
2014-05 - 期刊:
- 影响因子:0
- 作者:
许宝刚;Xingxing Yu - 通讯作者:
Xingxing Yu
The Kelmans-Seymour conjecture I: Special separations
凯尔曼斯-西摩猜想 I:特殊分离
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Dawei He;Yan Wang;Xingxing Yu - 通讯作者:
Xingxing Yu
Cycles in 4-connected planar graphs
4 连通平面图中的循环
- DOI:
10.1016/j.ejc.2003.04.003 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Guantao Chen;G. Fan;Xingxing Yu - 通讯作者:
Xingxing Yu
Xingxing Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xingxing Yu', 18)}}的其他基金
Research on Graph Coloring and Graph Structure
图着色与图结构研究
- 批准号:
2348702 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Conference: Atlanta Lecture Series in Combinatorics and Graph Theory
会议:亚特兰大组合学和图论系列讲座
- 批准号:
2321249 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Disjoint Paths in Graphs and Coloring
图形和着色中的不相交路径
- 批准号:
1954134 - 财政年份:2020
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Topological Minors, Connectivity, and Partitions
拓扑次要、连通性和分区
- 批准号:
1600738 - 财政年份:2016
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Atlanta Lecture Series in Combinatorics and Graph Theory, 2014/2015
亚特兰大组合学和图论系列讲座,2014/2015
- 批准号:
1400055 - 财政年份:2014
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Collaborative Research: Atlanta Lecture Series on Combinatorics and Graph Theory
合作研究:亚特兰大组合学和图论系列讲座
- 批准号:
1001743 - 财政年份:2010
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Some Problems Related to Graph Connectivity
与图连通性相关的一些问题
- 批准号:
0245530 - 财政年份:2003
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Mathematical Sciences: Cycles and Subdivisions in Graphs
数学科学:图中的循环和细分
- 批准号:
9301909 - 财政年份:1993
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
相似海外基金
Mixed Quantum-Classical Semiclassical Theory: Finding Reaction Paths in Open Quantum Systems
混合量子经典半经典理论:寻找开放量子系统中的反应路径
- 批准号:
2404809 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Paths to primacy: How rising powers win domination in Asia, 1500-present
通往霸主之路:崛起中的大国如何赢得亚洲统治地位(1500 年以来)
- 批准号:
FT230100547 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
ARC Future Fellowships
Carbon Pricing Policy: Paths to Carbon Neutrality
碳定价政策:碳中和之路
- 批准号:
24K16360 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402283 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
PaTHS - Pastoral Tracks Heading South: The evolution of the droveways (tratturi) in Central-Southern Italy
PaTHS - 向南的田园小径:意大利中南部车道 (tratturi) 的演变
- 批准号:
EP/Y02947X/1 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Fellowship
The University of Essex and Pursuing Independent Paths Ltd KTP 23_24 R3
埃塞克斯大学和追求独立路径有限公司 KTP 23_24 R3
- 批准号:
10084131 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Knowledge Transfer Network
ARCHCROP: Crossing Paths: Millet, Wheat and Cultural Exchanges in the Inner Asian Mountain Corridor, China
ARCHCROP:交叉路径:中国内亚山地走廊的小米、小麦和文化交流
- 批准号:
EP/Y027809/1 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Fellowship
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402284 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
AI-Powered Learning: Increasing User Retention and Productivity Through Personalised Learning Paths
人工智能驱动的学习:通过个性化学习路径提高用户保留率和生产力
- 批准号:
10079009 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Collaborative R&D
Defining Reaction Paths for Chalcogenide Materials Discovery
定义硫族化物材料发现的反应路径
- 批准号:
2305731 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Standard Grant