Totally Positive Spaces and Cluster Algebras

完全正空间和簇代数

基本信息

  • 批准号:
    1954121
  • 负责人:
  • 金额:
    $ 19.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-03-01 至 2024-02-29
  • 项目状态:
    已结题

项目摘要

Combinatorics is the study of discrete structures such as permutations and graphs, while topology deals with properties of geometric shapes that stay invariant under continuous deformations. The goal of the project is to apply a mix of topological and combinatorial techniques to questions arising in various areas of mathematics and physics. For example, recent connections between combinatorics and scattering amplitudes give rise to new methods to guide high-energy particle physics experiments. Other applications arise in determining interior properties of materials from boundary measurements, as well as in electrical impedance tomography and other types of medical imaging. The surprisingly natural combinatorial structures associated with the underlying topological spaces allow one to find unexpected connections between seemingly unrelated areas. The award provides research training of graduate studetns.This work comprises several projects that directly involve the positive Grassmannian. The topology of this space has been recently determined; however, the topology of several related spaces remains not fully understood. For example, the physics of scattering amplitudes is intimately related to the amplituhedron, which is a linear projection of the positive Grassmannian. One of the projects involves understanding its topological structure and the combinatorics of its triangulations. Another example is the space of planar Ising networks, which was shown to coincide with the positive orthogonal Grassmannian. This approach has promising applications to the questions of universality and conformal invariance of the Ising model. The resulting cell decomposition of the space of planar Ising networks suggests a surprising direct connection with the space of planar electrical networks. The underlying algebraic structure of such spaces is described by cluster algebras; one of the projects involves studying integrability properties of dynamical systems arising from cluster algebras.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
组合学是对排列和图等离散结构的研究,而拓扑学则研究在连续变形下保持不变的几何形状的属性。该项目的目标是将拓扑和组合技术结合应用来解决数学和物理各个领域中出现的问题。例如,最近组合学和散射振幅之间的联系产生了指导高能粒子物理实验的新方法。其他应用包括通过边界测量确定材料的内部特性,以及电阻抗断层扫描和其他类型的医学成像。与底层拓扑空间相关的令人惊讶的自然组合结构使人们能够在看似不相关的区域之间找到意想不到的联系。该奖项为研究生提供研究培训。这项工作包括几个直接涉及积极格拉斯曼主义的项目。该空间的拓扑最近已确定;然而,几个相关空间的拓扑结构仍未完全被理解。例如,散射振幅的物理原理与振幅面体密切相关,振幅面体是正格拉斯曼函数的线性投影。其中一个项目涉及了解其拓扑结构及其三角剖分的组合。另一个例子是平面伊辛网络的空间,它被证明与正正交格拉斯曼一致。这种方法对于解决伊辛模型的普适性和共形不变性问题具有广阔的应用前景。由此产生的平面伊辛网络空间的细胞分解表明与平面电气网络空间存在令人惊讶的直接联系。这些空间的底层代数结构由簇代数描述;其中一个项目涉及研究由簇代数产生的动力系统的可积性质。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The totally nonnegative Grassmannian is a ball
完全非负的格拉斯曼函数是一个球
  • DOI:
    10.1016/j.aim.2021.108123
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Galashin, Pavel;Karp, Steven N.;Lam, Thomas
  • 通讯作者:
    Lam, Thomas
Higher secondary polytopes and regular plabic graphs
高级二级多面体和正则平面图
  • DOI:
    10.1016/j.aim.2022.108549
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Galashin, Pavel;Postnikov, Alexander;Williams, Lauren
  • 通讯作者:
    Williams, Lauren
Regularity theorem for totally nonnegative flag varieties
A formula for boundary correlations of the critical Ising model
临界伊辛模型的边界相关性公式
Positroids, knots, and q, t-Catalan numbers
正类、结和 q、t-Catalan 数
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pavel Galashin其他文献

Index to the Mathematical Gazette
数学公报索引
  • DOI:
  • 发表时间:
    1976
  • 期刊:
  • 影响因子:
    0.3
  • 作者:
    Pavel Galashin;P. Pylyavskyy
  • 通讯作者:
    P. Pylyavskyy
Manifolds associated to simple games
与简单游戏相关的流形
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pavel Galashin;G. Panina
  • 通讯作者:
    G. Panina
Weak separation, pure domains and cluster distance
弱分离、纯域和簇距离
Move-reduced graphs on a torus
环面上的移动简化图
The classification of Zamolodchikov periodic quivers
Zamolodchikov周期性颤动的分类

Pavel Galashin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pavel Galashin', 18)}}的其他基金

CAREER: Statistical mechanics and knot theory in algebraic combinatorics
职业:代数组合中的统计力学和纽结理论
  • 批准号:
    2046915
  • 财政年份:
    2021
  • 资助金额:
    $ 19.78万
  • 项目类别:
    Continuing Grant

相似海外基金

The geometry, rigidity and combinatorics of spaces and groups with non-positive curvature feature
具有非正曲率特征的空间和群的几何、刚度和组合
  • 批准号:
    2305411
  • 财政年份:
    2023
  • 资助金额:
    $ 19.78万
  • 项目类别:
    Standard Grant
Fundamental groups and moduli spaces of curves in positive characteristic
正特性曲线的基本群和模空间
  • 批准号:
    20K14283
  • 财政年份:
    2020
  • 资助金额:
    $ 19.78万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Research on geodesic spaces of non-positive curvature on that groups act, infinite Coxeter groups and finite graphs
群作用、无限Coxeter群和有限图上非正曲率测地空间的研究
  • 批准号:
    18K03273
  • 财政年份:
    2018
  • 资助金额:
    $ 19.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometry, Topology, and Dynamics of Spaces of Non-Positive Curvature
非正曲率空间的几何、拓扑和动力学
  • 批准号:
    1812028
  • 财政年份:
    2018
  • 资助金额:
    $ 19.78万
  • 项目类别:
    Standard Grant
Positive operators on function spaces
函数空间上的正算子
  • 批准号:
    46181-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 19.78万
  • 项目类别:
    Discovery Grants Program - Individual
Research on spaces of non-positive curvature, their isometry groups and Coxeter groups
非正曲率空间及其等距群和Coxeter群的研究
  • 批准号:
    25800039
  • 财政年份:
    2013
  • 资助金额:
    $ 19.78万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Positive operators on function spaces
函数空间上的正算子
  • 批准号:
    46181-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 19.78万
  • 项目类别:
    Discovery Grants Program - Individual
Positive operators on function spaces
函数空间上的正算子
  • 批准号:
    46181-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 19.78万
  • 项目类别:
    Discovery Grants Program - Individual
Positive Spaces, Healthy Places: Closing the KTE Circle
积极的空间,健康的地方:关闭 KTE 圈子
  • 批准号:
    264666
  • 财政年份:
    2012
  • 资助金额:
    $ 19.78万
  • 项目类别:
    Miscellaneous Programs
Positive operators on function spaces
函数空间上的正算子
  • 批准号:
    46181-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 19.78万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了