Random Media in and Beyond Two Dimensions
二维和二维之外的随机媒体
基本信息
- 批准号:1954257
- 负责人:
- 金额:$ 15.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project involves the study of mathematical models of real physical phenomena. Among these are so-called percolative models, which describe the flow of fluid in a porous medium, a growing bacterial infection, or a long polymer chain. Another model to be studied is the Bak-Tang-Wiesenfeld model, the classic model of self-organized criticality (SOC), where simple, local rules generate complex, large-scale patterns. SOC has been used to explain commonalities between such apparently dissimilar phenomena as solar flares and neuron firing. Many of the most successful approaches to problems in these areas are valid only in certain special cases; for instance, certain two-dimensional percolative models with particular symmetry properties. A main goal of the project is the development of robust mathematical techniques which explain the behavior of such systems -- for instance, how smooth is the surface of a spreading drop of fluid -- in a broad range of physically interesting cases.The specific research problems to be studied include the following. In critical Bernoulli percolation (where one randomly removes just enough edges to make an infinite graph finite), the PI will study scaling limits of graph components and give sharp asymptotics for graph distances and electrical resistances. In first-passage percolation (where one randomly perturbs edge lengths in a graph), the PI will study fluctuations of graph distances and the tortuosity of long geodesics. In the Bak-Tang-Wiesenfeld model (an interacting particle system), the PI will study the correlation between particle movements at different moments of time. Some related problems have previously seemed more tractable in special settings like certain "solvable" growth models or in certain dimensions. This project will employ robust methods – stochastic geometric techniques, concentration of measure methods, and others – which apply to the widest range of possible settings and which distill the general principles underlying phenomena of interest.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目涉及研究真实的物理现象的数学模型。这些模型中有所谓的扩散模型,它描述了多孔介质中的流体流动、细菌感染的增长或长聚合物链。另一个要研究的模型是Bak-Tang-维森费尔德模型,这是自组织临界性(SOC)的经典模型,其中简单的局部规则生成复杂的大规模模式。SOC被用来解释太阳耀斑和神经元放电等明显不同的现象之间的共性。在这些领域中,许多最成功的解决问题的方法只在某些特殊情况下有效;例如,某些具有特殊对称性质的二维简化模型。该项目的一个主要目标是开发强大的数学技术,以解释这种系统的行为-例如,在广泛的物理有趣的情况下,一滴液体的表面有多光滑。在临界伯努利渗流(其中一个随机删除刚好足够的边缘,使一个无限的图形有限),PI将研究图形组件的缩放限制,并给出图形距离和电阻的尖锐渐近。在第一次通过渗流(其中一个随机扰动图中的边长)中,PI将研究图距离的波动和长测地线的曲折度。在Bak-Tang-维森费尔德模型(一种相互作用的粒子系统)中,PI将研究不同时刻粒子运动之间的相关性。一些相关的问题以前似乎更容易处理的特殊设置,如某些“可解决的”增长模型或在某些方面。该项目将采用可靠的方法--随机几何技术、测量方法的集中度等--这些方法适用于最广泛的可能环境,并提取出感兴趣现象的一般原理。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Subcritical Connectivity and Some Exact Tail Exponents in High Dimensional Percolation
高维渗流中的亚临界连通性和一些精确的尾部指数
- DOI:10.1007/s00220-023-04759-w
- 发表时间:2023
- 期刊:
- 影响因子:2.4
- 作者:Chatterjee, Shirshendu;Hanson, Jack;Sosoe, Philippe
- 通讯作者:Sosoe, Philippe
Strict Inequality for the Chemical Distance Exponent in Two‐Dimensional Critical Percolation
二维临界渗流中化学距离指数的严格不等式
- DOI:10.1002/cpa.21945
- 发表时间:2021
- 期刊:
- 影响因子:3
- 作者:Damron, Michael;Hanson, Jack;Sosoe, Philippe
- 通讯作者:Sosoe, Philippe
Restricted Percolation Critical Exponents in High Dimensions
- DOI:10.1002/cpa.21938
- 发表时间:2018-10
- 期刊:
- 影响因子:3
- 作者:S. Chatterjee;Jack Hanson
- 通讯作者:S. Chatterjee;Jack Hanson
Random nearest neighbor graphs: The translation invariant case
随机最近邻图:平移不变的情况
- DOI:10.1214/22-aihp1273
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Bock, Bounghun;Damron, Michael;Hanson, Jack
- 通讯作者:Hanson, Jack
Universality of the time constant for 2D critical first-passage percolation
- DOI:10.1214/22-aap1808
- 发表时间:2019-04
- 期刊:
- 影响因子:0
- 作者:M. Damron;Jack Hanson;Wai-Kit Lam
- 通讯作者:M. Damron;Jack Hanson;Wai-Kit Lam
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jack Hanson其他文献
Subdiffusivity of random walk on the 2D invasion percolation cluster
二维入侵渗流簇上随机游走的次扩散性
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
M. Damron;Jack Hanson;Philippe Sosoe - 通讯作者:
Philippe Sosoe
Anomalous dimension in a two-species reaction–diffusion system
两种物质反应扩散系统中的反常维度
- DOI:
10.1088/1751-8121/aa98cf - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
B. Vollmayr;Jack Hanson;R. Scott Mcisaac;Joshua D. Hellerick - 通讯作者:
Joshua D. Hellerick
Subdiffusive concentration in first passage percolation
第一次渗透时的亚扩散浓度
- DOI:
10.1214/ejp.v19-3680 - 发表时间:
2014 - 期刊:
- 影响因子:1.4
- 作者:
M. Damron;Jack Hanson;Philippe Sosoe - 通讯作者:
Philippe Sosoe
LIMITING GEODESICS FOR FIRST-PASSAGE PERCOLATION ON SUBSETS OF Z 2
Z 2 子集第一通道渗流的极限测地线
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
M. Damron;Jack Hanson - 通讯作者:
Jack Hanson
Limiting geodesics for first-passage percolation on subsets of $mathbb{Z}^{2}$
$mathbb{Z}^{2}$ 子集上第一通道渗滤的限制测地线
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Antonio Auffinger;M. Damron;Jack Hanson - 通讯作者:
Jack Hanson
Jack Hanson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jack Hanson', 18)}}的其他基金
Correlations and Scaling in Disordered and Critical Stochastic Models
无序和临界随机模型中的相关性和标度
- 批准号:
1612921 - 财政年份:2016
- 资助金额:
$ 15.61万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: 4D Visualization and Modeling of Two-Phase Flow and Deformation in Porous Media beyond the Realm of Creeping Flow
合作研究:蠕动流领域之外的多孔介质中两相流和变形的 4D 可视化和建模
- 批准号:
2326113 - 财政年份:2023
- 资助金额:
$ 15.61万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Combating AI Synthesized Media Beyond Detection
SaTC:核心:小型:对抗无法检测的人工智能合成媒体
- 批准号:
2153112 - 财政年份:2022
- 资助金额:
$ 15.61万 - 项目类别:
Standard Grant
Using AI and smart devices to make considered talent introductions in media through COVID and beyond
利用人工智能和智能设备在新冠疫情及其他情况下在媒体上进行深思熟虑的人才引进
- 批准号:
86719 - 财政年份:2020
- 资助金额:
$ 15.61万 - 项目类别:
Collaborative R&D
Collaborative Research: 4D Visualization and Modeling of Two-Phase Flow and Deformation in Porous Media beyond the Realm of Creeping Flow
合作研究:蠕动流领域之外的多孔介质中两相流和变形的 4D 可视化和建模
- 批准号:
2000968 - 财政年份:2020
- 资助金额:
$ 15.61万 - 项目类别:
Standard Grant
Collaborative Research: 4D Visualization and Modeling of Two-Phase Flow and Deformation in Porous Media beyond the Realm of Creeping Flow
合作研究:蠕动流领域之外的多孔介质中两相流和变形的 4D 可视化和建模
- 批准号:
2000966 - 财政年份:2020
- 资助金额:
$ 15.61万 - 项目类别:
Standard Grant
Beyond the MSM: Understanding the rise of alternative online political media
超越 MSM:了解另类在线政治媒体的崛起
- 批准号:
ES/S002510/1 - 财政年份:2019
- 资助金额:
$ 15.61万 - 项目类别:
Research Grant
CHS: Medium: Collaborative Research: Beyond the Black Box: Understanding and Designing for User Expectations of Algorithmic Media
CHS:媒介:协作研究:超越黑匣子:理解和设计算法媒体的用户期望
- 批准号:
1564079 - 财政年份:2016
- 资助金额:
$ 15.61万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Beyond the Black Box: Understanding and Designing for User Expectations of Algorithmic Media
CHS:媒介:协作研究:超越黑匣子:理解和设计算法媒体的用户期望
- 批准号:
1564041 - 财政年份:2016
- 资助金额:
$ 15.61万 - 项目类别:
Standard Grant
XRAYS (EXAMINING RELEVANCE OF ARTICLES FOR YOUNG SURVIVORS): LOOKING BEYOND THE HEADLINES FOR RELEVANCE OF MEDIA ARTICLES FOR YOUNG BREAST CANCER SURVIVORS
X 射线(检查文章与年轻乳腺癌幸存者的相关性):超越标题,了解媒体文章与年轻乳腺癌幸存者的相关性
- 批准号:
8888211 - 财政年份:2014
- 资助金额:
$ 15.61万 - 项目类别:
Beyond Concern: The implications of sexualization for the study of sex, the media and culture
超越关注:性化对性、媒体和文化研究的影响
- 批准号:
AH/J006327/1 - 财政年份:2013
- 资助金额:
$ 15.61万 - 项目类别:
Fellowship