Temperature Jump Infrared Electrochemical Spectroscopy (TIR-SEC) of Catalytic Intermediates
催化中间体的温跃红外电化学光谱 (TIR-SEC)
基本信息
- 批准号:1954301
- 负责人:
- 金额:$ 43.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project funded by the Chemical Structure, Dynamics, and Mechanisms-A (CSDM-A) program of the Chemistry Division, Professor John Asbury of The Pennsylvania State University is using advanced laser techniques to understand how to control complex reactions at the surfaces of catalytic materials. Many sluggish chemical reactions can be accelerated by applying voltage to catalysts - materials that are designed to direct the course of the reactions. In this project, catalysts are developed to accelerate and direct reactions that can reduce carbon dioxide to fuels or that can reduce nitrogen gas to ammonia for fertilizers. Such reactions can play important roles in building sustainable energy and agricultural systems in the future. The reactions occur by transferring multiple electrons and multiple protons to the products that form during the course of the reactions. Each time electrons and protons are added to the product molecules, their chemical properties change. This project is providing insights into how chemical reactions occur at the surfaces of catalysts and what types of sites on their surfaces can most effectively direct each electron and proton transfer step. Students engaged in this research project are gaining valuable experience in state of the art laser techniques, electrochemistry and catalytic materials design. The broader impacts of this work include potential societal benefits from the development of catalysts to more efficiently convert gases such as carbon dioxide and nitrogen to useful products for more sustainable energy and agricultural systems as well as opportunities to train students in the design of advanced spectroscopy and electrochemical instrumentation for catalytic studies under operating conditions. Some of the spectroscopy techniques developed in this research project will be introduced into undergraduate teaching laboratories.The project focuses on time-resolving reaction intermediates involved in multiple electron and proton transfer steps that lead to the conversion of carbon dioxide to alkanes and gaseous nitrogen to ammonia. The reaction intermediates are identified through their mid-infrared vibrational signatures as they form on catalyst surfaces that are deposited onto attenuated total internal reflection mid-infrared waveguides. The catalysts are incorporated into operating electrochemical cells that allow chemical intermediates to be monitored under operating electrochemical potentials. The catalytic reactions are triggered by application of an electrochemical potential and a short laser pulse that are followed by a mid-infrared probe pulse that propagates through the waveguide. The waveguide consists of a silicon prism on which the catalyst and working electrode are deposited, immersed in an electrolyte, and sealed in a vessel to contain gases that are involved in the reactions. The spectroscopic observations of chemical intermediates are correlated with the activity of the electrocatalysts to provide insight about how catalytic intermediates at various stages of the reactions influence the overall activity and selectivity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在这个由化学系化学结构、动力学和机理-A(CSDM-A)项目资助的项目中,宾夕法尼亚州立大学的约翰·阿斯伯里教授正在使用先进的激光技术来了解如何控制催化材料表面的复杂反应。许多缓慢的化学反应可以通过向催化剂施加电压来加速,催化剂是设计用于指导反应过程的材料。在该项目中,开发催化剂以加速和直接反应,从而将二氧化碳还原为燃料,或将氮气还原为氨用于肥料。这种反应在今后建立可持续能源和农业系统方面可发挥重要作用。这些反应通过将多个电子和多个质子转移到反应过程中形成的产物中而发生。每次电子和质子被添加到产物分子中时,它们的化学性质都会发生变化。该项目旨在深入了解催化剂表面如何发生化学反应,以及催化剂表面上哪些类型的位点可以最有效地指导每个电子和质子转移步骤。参与该研究项目的学生在最先进的激光技术,电化学和催化材料设计方面获得了宝贵的经验。 这项工作的更广泛影响包括开发催化剂以更有效地将二氧化碳和氮气等气体转化为更可持续的能源和农业系统的有用产品的潜在社会效益,以及培训学生设计先进光谱学和电化学仪器的机会。本研究项目中开发的一些光谱技术将被引入本科教学实验室。该项目的重点是时间分辨涉及多个电子和质子转移步骤的反应中间体,这些步骤导致二氧化碳转化为烷烃和气态氮转化为氨。反应中间体通过它们的中红外振动特征来识别,因为它们在沉积到衰减全内反射中红外波导上的催化剂表面上形成。将催化剂并入操作电化学电池中,所述操作电化学电池允许在操作电化学电势下监测化学中间体。催化反应是通过施加电化学势和短激光脉冲触发的,随后是通过波导传播的中红外探测脉冲。波导由硅棱镜组成,催化剂和工作电极沉积在其上,浸入电解质中,并密封在容器中以容纳参与反应的气体。化学中间体的光谱观测结果与电催化剂的活性相关,提供了关于催化中间体在反应的各个阶段如何影响整体活性和选择性的见解。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Influence of Dynamic Disorder and Charge–Lattice Interactions on Optoelectronic Properties of Halide Perovskites
- DOI:10.1021/acs.jpcc.0c10889
- 发表时间:2021-02
- 期刊:
- 影响因子:3.7
- 作者:Kyle T. Munson;J. Asbury
- 通讯作者:Kyle T. Munson;J. Asbury
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Asbury其他文献
John Asbury的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Asbury', 18)}}的其他基金
MRI: Development of an Ultrafast Photoluminescence and Transient Absorption Microscope in Ultrahigh Vacuum for Studying Electronic Properties of 2-Dimensional Materials
MRI:开发超高真空超快光致发光和瞬态吸收显微镜,用于研究二维材料的电子特性
- 批准号:
1826790 - 财政年份:2018
- 资助金额:
$ 43.22万 - 项目类别:
Standard Grant
Infrared Electro-Optical Spectroscopy of Degradation Pathways in Organo-Halide Perovskite Photovoltaics
有机卤化物钙钛矿光伏降解途径的红外电光光谱
- 批准号:
1464735 - 财政年份:2015
- 资助金额:
$ 43.22万 - 项目类别:
Continuing Grant
CAREER: Elucidating Structures of Charge Traps in Organic Photovoltaic Materials Using Ultrafast 2D IR Spectroelectrochemistry
职业:利用超快二维红外光谱电化学阐明有机光伏材料中电荷陷阱的结构
- 批准号:
0846241 - 财政年份:2009
- 资助金额:
$ 43.22万 - 项目类别:
Continuing Grant
相似国自然基金
光滑拟射影复代数簇的 jump loci 与 L^2 类不变量
- 批准号:12001511
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Fe-Ga(Al)磁致伸缩“jump”效应能量转换问题
- 批准号:51371028
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
- 批准号:
2420358 - 财政年份:2024
- 资助金额:
$ 43.22万 - 项目类别:
Standard Grant
Diffusions and jump processes on groups and manifolds
群和流形上的扩散和跳跃过程
- 批准号:
2343868 - 财政年份:2024
- 资助金额:
$ 43.22万 - 项目类别:
Continuing Grant
Postdoctoral Fellowship: MPS-Ascend: Quantifying Accelerated Reaction Kinetics in Microdroplets with pH-Jump and Mass Spectrometry: From Small Molecules to Proteins and Beyond
博士后奖学金:MPS-Ascend:利用 pH 跳跃和质谱定量微滴中的加速反应动力学:从小分子到蛋白质及其他
- 批准号:
2316167 - 财政年份:2023
- 资助金额:
$ 43.22万 - 项目类别:
Fellowship Award
Energy-efficient Electric Jump Take-Off
节能电动跳跃起飞
- 批准号:
10061816 - 财政年份:2023
- 资助金额:
$ 43.22万 - 项目类别:
Collaborative R&D
How do kangaroo herpesviruses jump to new host species?
袋鼠疱疹病毒如何转移到新的宿主物种?
- 批准号:
DP230102121 - 财政年份:2023
- 资助金额:
$ 43.22万 - 项目类别:
Discovery Projects
Increasing access to chemistry for high schoolers with blindness: a program to jump start Central Texas
增加失明高中生接触化学的机会:一项启动德克萨斯州中部的计划
- 批准号:
10600066 - 财政年份:2022
- 资助金额:
$ 43.22万 - 项目类别:
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
- 批准号:
2152655 - 财政年份:2022
- 资助金额:
$ 43.22万 - 项目类别:
Standard Grant
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
- 批准号:
2152679 - 财政年份:2022
- 资助金额:
$ 43.22万 - 项目类别:
Standard Grant
Bio-Robots: Crawl, Jump, and Slither!
仿生机器人:爬行、跳跃和滑行!
- 批准号:
EP/W033755/1 - 财政年份:2022
- 资助金额:
$ 43.22万 - 项目类别:
Research Grant
A Quantum Jump Sensor for Dark Matter Detection
用于暗物质检测的量子跃迁传感器
- 批准号:
ST/W006650/1 - 财政年份:2022
- 资助金额:
$ 43.22万 - 项目类别:
Research Grant