Noncommutative Rational Functions in Free Analysis
自由分析中的非交换有理函数
基本信息
- 批准号:1954709
- 负责人:
- 金额:$ 11.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our world is essentially noncommutative in the sense that the order of actions often matters; for example, heating and cracking an egg can result in either a boiled egg or a fried egg, depending on the order of the operations. This is the reason why matrices, which encode noncommutativity in mathematics, are omnipresent in science. In many areas, such as control theory, quantum information theory and random matrix theory, the emerging questions about matrices and their ensembles are phrased so as to be independent of the matrix size. For example, a control system is designed as a black box, and its stability preferably does not depend on size of the input data (matrices) but only on the design and the structure of the system (a function of matrices). The common framework for such problems is provided by free analysis ("free" as in size-free), which studies functions in matrix variables. When such a function is built using only variables and arithmetic operations, it is called a noncommutative rational function. This project focuses on analytic, algebraic and geometric aspects of noncommutative rational functions and their evaluations on matrices. The goal is to apply novel synergistic techniques to answer fundamental open questions about noncommutative rational functions, apply their resolutions to semidefinite optimization and control theory, and accompany these theoretical results with efficient algorithms.The aim of this project is twofold. On one hand, it considers questions about noncommutative rational functions that arise from free analysis and real algebraic geometry. Their common thread is the following: given a geometric feature of matrix evaluations of a noncommutative rational function, what can be deduced about its structure? This research focuses on positivity and singularity sets of noncommutative rational functions, their symmetries and existence of rational maps between them, with a view towards transforming non-convex (hard) problems in control theory and optimization into convex (easy) ones. Furthermore, this part of the project addresses natural extensions of noncommutative rational functions, such as noncommutative meromorphic functions and rational functions on operators acting on infinite dimensional spaces. On the other hand, noncommutative rational functions form a free skew field and are therefore related to several fundamental purely algebraic topics, such as the automorphism group of the free skew field, the free Lüroth problem, and the characteristic-free Freiheitssatz in a free algebra. The second part of this project proposes to apply ideas and techniques from free analysis to overcome these challenges.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Our world is essentially noncommutative in the sense that the order of actions often matters; for example, heating and cracking an egg can result in either a boiled egg or a fried egg, depending on the order of the operations. This is the reason why matrices, which encode noncommutativity in mathematics, are omnipresent in science. In many areas, such as control theory, quantum information theory and random matrix theory, the emerging questions about matrices and their ensembles are phrased so as to be independent of the matrix size. For example, a control system is designed as a black box, and its stability preferably does not depend on size of the input data (matrices) but only on the design and the structure of the system (a function of matrices). The common framework for such problems is provided by free analysis ("free" as in size-free), which studies functions in matrix variables. When such a function is built using only variables and arithmetic operations, it is called a noncommutative rational function. This project focuses on analytic, algebraic and geometric aspects of noncommutative rational functions and their evaluations on matrices. The goal is to apply novel synergistic techniques to answer fundamental open questions about noncommutative rational functions, apply their resolutions to semidefinite optimization and control theory, and accompany these theoretical results with efficient algorithms.The aim of this project is twofold. On one hand, it considers questions about noncommutative rational functions that arise from free analysis and real algebraic geometry. Their common thread is the following: given a geometric feature of matrix evaluations of a noncommutative rational function, what can be deduced about its structure? This research focuses on positivity and singularity sets of noncommutative rational functions, their symmetries and existence of rational maps between them, with a view towards transforming non-convex (hard) problems in control theory and optimization into convex (easy) ones. Furthermore, this part of the project addresses natural extensions of noncommutative rational functions, such as noncommutative meromorphic functions and rational functions on operators acting on infinite dimensional spaces. On the other hand, noncommutative rational functions form a free skew field and are therefore related to several fundamental purely algebraic topics, such as the automorphism group of the free skew field, the free Lüroth problem, and the characteristic-free Freiheitssatz in a free algebra. The second part of this project proposes to apply ideas and techniques from free analysis to overcome these challenges.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Noncommutative rational functions invariant under the action of a finite solvable group
有限可解群作用下不变的非交换有理函数
- DOI:10.1016/j.jmaa.2020.124341
- 发表时间:2020
- 期刊:
- 影响因子:1.3
- 作者:Klep, Igor;Pascoe, James Eldred;Podlogar, Gregor;Volčič, Jurij
- 通讯作者:Volčič, Jurij
Dimension-Free Entanglement Detection in Multipartite Werner States
- DOI:10.1007/s00220-022-04485-9
- 发表时间:2021-08
- 期刊:
- 影响因子:2.4
- 作者:Felix Huber;I. Klep;Victor Magron;Jurij Volčič
- 通讯作者:Felix Huber;I. Klep;Victor Magron;Jurij Volčič
Globally trace-positive noncommutative polynomials and the unbounded tracial moment problem
全局迹正非交换多项式和无界迹矩问题
- DOI:10.1007/s00208-022-02495-5
- 发表时间:2022
- 期刊:
- 影响因子:1.4
- 作者:Klep, Igor;Scheiderer, Claus;Volčič, Jurij
- 通讯作者:Volčič, Jurij
Positive univariate trace polynomials
正单变量迹多项式
- DOI:10.1016/j.jalgebra.2021.03.027
- 发表时间:2021
- 期刊:
- 影响因子:0.9
- 作者:Klep, Igor;Pascoe, James Eldred;Volčič, Jurij
- 通讯作者:Volčič, Jurij
Optimization Over Trace Polynomials
迹多项式的优化
- DOI:10.1007/s00023-021-01095-4
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Klep, Igor;Magron, Victor;Volčič, Jurij
- 通讯作者:Volčič, Jurij
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Schlumprecht其他文献
Remarks on the point character of Banach spaces and non-linear embeddings into~$c_0(Ga)$
关于Banach空间的点特征和非线性嵌入~$c_0(Ga)$的备注
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Petr Hájek;M. Johanis;Thomas Schlumprecht;Gilles Godefroy - 通讯作者:
Gilles Godefroy
Shift invariant preduals of ℓ 1(ℤ)
- DOI:
10.1007/s11856-012-0040-1 - 发表时间:
2012-03-28 - 期刊:
- 影响因子:0.800
- 作者:
Matthew Daws;Richard Haydon;Thomas Schlumprecht;Stuart White - 通讯作者:
Stuart White
Transportation cost spaces and their embeddings into $L_1$, a Survey
运输成本空间及其嵌入 $L_1$ 的调查
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Thomas Schlumprecht - 通讯作者:
Thomas Schlumprecht
On limitedness in locally convex spaces
- DOI:
10.1007/bf01194874 - 发表时间:
1989-07-01 - 期刊:
- 影响因子:0.500
- 作者:
Mikael Lindström;Thomas Schlumprecht - 通讯作者:
Thomas Schlumprecht
Thomas Schlumprecht的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Schlumprecht', 18)}}的其他基金
Banach Spaces: Theory and Applications
Banach 空间:理论与应用
- 批准号:
2054443 - 财政年份:2021
- 资助金额:
$ 11.39万 - 项目类别:
Standard Grant
Banach Spaces: Theory and Applications
Banach 空间:理论与应用
- 批准号:
1764343 - 财政年份:2018
- 资助金额:
$ 11.39万 - 项目类别:
Continuing Grant
Banach Spaces: Theory and Applications
Banach 空间:理论与应用
- 批准号:
1464713 - 财政年份:2015
- 资助金额:
$ 11.39万 - 项目类别:
Continuing Grant
Banach Spaces: Theory and Applications
Banach 空间:理论与应用
- 批准号:
1160633 - 财政年份:2012
- 资助金额:
$ 11.39万 - 项目类别:
Continuing Grant
Banach spaces: Theory and Application
巴纳赫空间:理论与应用
- 批准号:
0856148 - 财政年份:2009
- 资助金额:
$ 11.39万 - 项目类别:
Continuing Grant
Banach Spaces: Theory and Application
Banach 空间:理论与应用
- 批准号:
0556013 - 财政年份:2006
- 资助金额:
$ 11.39万 - 项目类别:
Continuing Grant
Banach Spaces and Operators on them
Banach 空间及其上的算子
- 批准号:
0300058 - 财政年份:2003
- 资助金额:
$ 11.39万 - 项目类别:
Continuing Grant
Banach Spaces: Theory and Application
Banach 空间:理论与应用
- 批准号:
0070456 - 财政年份:2000
- 资助金额:
$ 11.39万 - 项目类别:
Standard Grant
Structure Theory of Infinite Dimensional Banach Spaces and a Gaussian Correlation Problem
无限维Banach空间的结构理论和高斯相关问题
- 批准号:
9706828 - 财政年份:1997
- 资助金额:
$ 11.39万 - 项目类别:
Continuing Grant
Mathematical Sciences: Structure Theory of Infinite Dimensional Banach Spaces and a Gaussian Correlation Problem
数学科学:无限维 Banach 空间的结构理论和高斯相关问题
- 批准号:
9501243 - 财政年份:1995
- 资助金额:
$ 11.39万 - 项目类别:
Standard Grant
相似国自然基金
基于Rational Krylov法和小波域稀疏约束的时间域海洋电磁三维正反演研究
- 批准号:41804098
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于Rational-Tensor(RTCam)摄像机模型的序列图像间几何框架研究
- 批准号:61072105
- 批准年份:2010
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Analysis of noncommutative rational functions in terms of free probability
用自由概率分析非交换有理函数
- 批准号:
22KJ1817 - 财政年份:2023
- 资助金额:
$ 11.39万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Rational Transfer Functions for Experimental Microwave Imaging Calibration and Inversion
实验微波成像校准和反演的有理传递函数
- 批准号:
572509-2022 - 财政年份:2022
- 资助金额:
$ 11.39万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
CAREER: Computing with Rational Functions
职业:使用有理函数进行计算
- 批准号:
2045646 - 财政年份:2021
- 资助金额:
$ 11.39万 - 项目类别:
Continuing Grant
Positivity of rational functions and their diagonals
有理函数及其对角线的正性
- 批准号:
553623-2020 - 财政年份:2020
- 资助金额:
$ 11.39万 - 项目类别:
University Undergraduate Student Research Awards
RUI: Rational Schur Functions and their Applications
RUI:Rational Schur 函数及其应用
- 批准号:
2000088 - 财政年份:2020
- 资助金额:
$ 11.39万 - 项目类别:
Standard Grant
Multiplicative structure of rational functions
有理函数的乘法结构
- 批准号:
DP200100355 - 财政年份:2020
- 资助金额:
$ 11.39万 - 项目类别:
Discovery Projects
Rational Design of Complex Protein Functions by Modulation of Backbone Dynamics
通过主链动力学调节复杂蛋白质功能的合理设计
- 批准号:
RGPIN-2016-04831 - 财政年份:2020
- 资助金额:
$ 11.39万 - 项目类别:
Discovery Grants Program - Individual
Rational Design of Complex Protein Functions by Modulation of Backbone Dynamics
通过主链动力学调节复杂蛋白质功能的合理设计
- 批准号:
RGPIN-2016-04831 - 财政年份:2019
- 资助金额:
$ 11.39万 - 项目类别:
Discovery Grants Program - Individual
Rational Design of Complex Protein Functions by Modulation of Backbone Dynamics
通过主链动力学调节复杂蛋白质功能的合理设计
- 批准号:
RGPIN-2016-04831 - 财政年份:2018
- 资助金额:
$ 11.39万 - 项目类别:
Discovery Grants Program - Individual
Computing with rational functions
用有理函数计算
- 批准号:
19K21027 - 财政年份:2018
- 资助金额:
$ 11.39万 - 项目类别:
Grant-in-Aid for Research Activity Start-up