Collaborative Research:SHF:Medium:Bringing Python Up to Speed
合作研究:SHF:Medium:加快 Python 速度
基本信息
- 批准号:1954830
- 负责人:
- 金额:$ 37.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Python programming language is among today's most popular computer programming languages and is used to write software in a wide variety of domains, from web services to data analysis to machine learning. Unfortunately, Python’s lightweight and flexible nature -- a major source of its appeal -- can cause significant performance and correctness problems - Python programs can suffer slowdowns as high as 60,000x over optimized code written in traditional programming languages like C and C++, and can require an order-of-magnitude more memory. Python's flexible, “dynamic” features also make its programs error-prone, with many coding errors only being discovered late in development or after deployment. Python’s frequent use as a "glue language" -- to integrate and interact with different components written in C or C++ -- exposes many Python programs to the unique dangers of those languages, including susceptibility to memory corruption-based security vulnerabilities. This project aims to remedy these problems by developing new technology for Python in the form of novel performance analysis tools, memory-reduction and speed-improving optimizations (including support for multi-core execution), automated software testing frameworks, and common benchmarks to drive their evaluation.This project will develop (1) performance analysis tools that help Python programmers accurately identify the sources of slowdowns; (2) techniques for automatically identifying code that can be replaced by calls to C/C++ libraries; (3) an approach to unlocking parallelism in Python threads, which currently must execute sequentially due to a global interpreter lock; and (4) automatic techniques to drastically reduce the memory footprints of Python applications. To improve the correctness of Python applications, the project will develop novel automated testing techniques that (1) augment property-based random testing with coverage-guided fuzzing; (2) employ concolic execution for smarter test generation and input minimization; (3) synthesize property-specific generator functions; (4) leverage statistical clustering techniques to reduce duplicated failure-inducing inputs; and (5) leverage parallelism and adaptive scheduling algorithms to increase testing throughput. The project will develop a set of "bug benchmarks" -- indeed, a novel benchmark-producing methodology -- to evaluate these techniques. The twin threads of performance and correctness are synergistic and complementary: automatic testing drives performance analysis, while performance optimizations (like parallelism) speed automatic testing.This award is co-funded by the Software & Hardware Foundations Program in the Division of Computer & Computing Foundations, and the NSF Office of Advanced Cyberinfrastructure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Python 编程语言是当今最流行的计算机编程语言之一,用于编写各种领域的软件,从 Web 服务到数据分析再到机器学习。不幸的是,Python 的轻量级和灵活特性(其吸引力的一个主要来源)可能会导致严重的性能和正确性问题 - Python 程序的速度可能比用 C 和 C++ 等传统编程语言编写的优化代码高出 60,000 倍,并且可能需要更多数量级的内存。 Python 灵活的“动态”特性也使其程序容易出错,许多编码错误只有在开发后期或部署后才被发现。 Python 经常用作“粘合语言”(与用 C 或 C++ 编写的不同组件集成和交互),这使许多 Python 程序面临这些语言的独特危险,包括容易受到基于内存损坏的安全漏洞的影响。该项目旨在通过开发 Python 新技术来解决这些问题,具体形式包括新颖的性能分析工具、内存减少和速度提升优化(包括对多核执行的支持)、自动化软件测试框架以及驱动评估的通用基准。该项目将开发 (1) 性能分析工具,帮助 Python 程序员准确识别速度下降的根源; (2) 自动识别可以通过调用 C/C++ 库来替换的代码的技术; (3) 一种解锁 Python 线程并行性的方法,目前由于全局解释器锁,线程必须顺序执行; (4) 大幅减少 Python 应用程序内存占用的自动技术。为了提高Python应用程序的正确性,该项目将开发新颖的自动化测试技术,这些技术(1)通过覆盖引导的模糊测试增强基于属性的随机测试; (2) 采用 concolic 执行来实现更智能的测试生成和输入最小化; (3) 综合属性特定的生成器函数; (4) 利用统计聚类技术减少重复的引发故障的输入; (5) 利用并行性和自适应调度算法来提高测试吞吐量。该项目将开发一套“错误基准”——实际上是一种新颖的基准生成方法——来评估这些技术。性能和正确性的双线程是协同和互补的:自动测试驱动性能分析,而性能优化(如并行性)加速自动测试。该奖项由计算机与计算基础部门的软件和硬件基础计划以及 NSF 高级网络基础设施办公室共同资助。该奖项反映了 NSF 的法定使命,并通过使用 基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emery Berger其他文献
Emery Berger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emery Berger', 18)}}的其他基金
SHF: Small: S3: Statistical and Structural Analysis for Spreadsheets
SHF:小型:S3:电子表格的统计和结构分析
- 批准号:
1617892 - 财政年份:2016
- 资助金额:
$ 37.71万 - 项目类别:
Standard Grant
TWC: Small: Collaborative: EVADE: Evidence-Assisted Detection and Elimination of Security Vulnerabilities
TWC:小型:协作:EVADE:证据辅助检测和消除安全漏洞
- 批准号:
1525888 - 财政年份:2015
- 资助金额:
$ 37.71万 - 项目类别:
Standard Grant
XPS: FULL: SDA: Collaborative Research: SCORE: Scalability-Oriented Optimization
XPS:完整:SDA:协作研究:SCORE:面向可扩展性的优化
- 批准号:
1439008 - 财政年份:2014
- 资助金额:
$ 37.71万 - 项目类别:
Standard Grant
SHF: Large: Collaborative Research: Reliable Performance for Modern Systems
SHF:大型:协作研究:现代系统的可靠性能
- 批准号:
1012195 - 财政年份:2010
- 资助金额:
$ 37.71万 - 项目类别:
Continuing Grant
SHF: Large:Collaborative Research: PASS: Perpetually Available Software Systems
SHF:大型:协作研究:PASS:永久可用的软件系统
- 批准号:
0910883 - 财政年份:2009
- 资助金额:
$ 37.71万 - 项目类别:
Standard Grant
Probabilistically Correct Execution: Hardening Applications Against Error and Attack
概率上正确的执行:强化应用程序以防止错误和攻击
- 批准号:
0615211 - 财政年份:2006
- 资助金额:
$ 37.71万 - 项目类别:
Standard Grant
CAREER: Cooperative System Support for Robust High Performance
职业:协作系统支持强大的高性能
- 批准号:
0347339 - 财政年份:2004
- 资助金额:
$ 37.71万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 37.71万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 37.71万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 37.71万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 37.71万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 37.71万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 37.71万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 37.71万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 37.71万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403135 - 财政年份:2024
- 资助金额:
$ 37.71万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403409 - 财政年份:2024
- 资助金额:
$ 37.71万 - 项目类别:
Standard Grant














{{item.name}}会员




