CAREER: Cooperative System Support for Robust High Performance

职业:协作系统支持强大的高性能

基本信息

  • 批准号:
    0347339
  • 负责人:
  • 金额:
    $ 47.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-06-01 至 2010-05-31
  • 项目状态:
    已结题

项目摘要

Modern software systems are brittle. Today's systems fall over a performance cliff once load crosses a certain threshold due to the ever-steeper memory hierarchy. After this point, if there is any service, it is provided in a haphazard manner that is both unpredictable and uncontrollable. The latency between processors and memory - the memory wall - is large and growing, but even greater latency now exists between main memory and disk - the disk wall. As load increases, the combined working sets of processes can exceed main memory capacity. The resulting paging activity can render a system unresponsive. When paging occurs, the virtual memory manager becomes the de facto scheduler, thwarting load management. Technology trends are conspiring to make this problem more severe in the future. High-quality, high-performance RAM is increasingly expensive. Disk latency is millions of CPU cycles and growing, requiring larger filesystem caches. Garbage-collected languages lika Java and C# lead to larger working sets and worse locality. Finally, data-hungry applications such as multimedia and data mining are placing growing demands on memory.An integrated attack on this problem is proposed by developing cooperative system support that intelligently manages the memory hierarchy. Enabling high performance and providing robustness under load. This approach involves novel adaptive algorithms and cooperation between the compiler, operating system, and run-time systems. The work will develop two synergistic new research areas:1. Cooperative memory management between the operating system and run-time systems, including coarse-grained and fine-grained garbage collectors, to reduce or eliminate paging.2. Scheduler-aware virtual memory management to provide predictable scheduling under load.The coarse-grained collector will react to memory load information by reducing application footprint. Models will be developed (using VM information) to allow garbage collectors to perform cost-benefit analyses to choose the best possible heap size. The fine-grained collector will cooperate closely with the virtual memory, selecting appropriate victim pages for eviction by relocating objects to create empty pages, and preventing paging during garbage collection. Compiler programs will be adapted and developed. The analyses will be used to group objects with similar lifetimes onto the same pages. The scheduler-aware virtual memory manager will maintain detailed reference behavior tracking the utility of possible main memory allocations to each process. The scheduler will communicate its intended schedule to the virtual memory manager, which will weigh the utility of each allocation by the proportion of CPU time that the scheduler requests. A utility metric system will enable memory to be provided to each process so that it can run for its CPU proportion and then inform the scheduler when processes cannot be scheduled, so that the scheduler can decide which ones should be deactivated.
现代软件系统是脆弱的。 由于内存层次结构越来越陡峭,一旦负载超过某个阈值,今天的系统就会跌落性能悬崖。 在这一点之后,如果有任何服务,它是以一种偶然的方式提供的,这种方式既不可预测又不可控制。 处理器和内存之间的延迟(内存墙)很大,而且还在增长,但现在主存和磁盘之间的延迟更大。 随着负载的增加,进程的组合工作集可能会超过主存容量。 由此产生的分页活动可能导致系统无响应。 当分页发生时,虚拟内存管理器成为事实上的调度程序,从而阻碍了负载管理。 技术趋势正在使这个问题在未来变得更加严重。 高质量、高性能的RAM越来越昂贵。 磁盘延迟是数百万个CPU周期,并且还在增长,需要更大的文件系统缓存。 像Java和C#这样的垃圾收集语言会导致更大的工作集和更差的局部性。 最后,数据饥饿的应用程序,如多媒体和数据挖掘提出了不断增长的需求,对这个问题的综合攻击,提出了开发合作系统支持,智能管理的内存层次结构。实现高性能并在负载下提供鲁棒性。 这种方法涉及新的自适应算法和编译器,操作系统和运行时系统之间的合作。 这项工作将开发两个协同的新研究领域:1。操作系统和运行时系统之间的协作内存管理,包括粗粒度和细粒度的垃圾收集器,以减少或消除分页。2.可感知内存的虚拟内存管理,在负载下提供可预测的调度。粗粒度收集器将通过减少应用程序占用来对内存负载信息做出反应。 将开发模型(使用虚拟机信息),以允许垃圾收集器执行成本效益分析,以选择最佳的堆大小。 细粒度收集器将与虚拟内存密切合作,通过重新定位对象以创建空页来选择适当的牺牲页进行驱逐,并在垃圾收集期间防止分页。 将调整和开发更多的方案。 这些分析将用于将具有相似生存期的对象分组到相同的页面上。 可感知内存的虚拟内存管理器将维护详细的引用行为,跟踪每个进程可能的主内存分配的效用。 调度程序将其预期的调度传达给虚拟内存管理器,虚拟内存管理器将根据调度程序请求的CPU时间比例来衡量每个分配的效用。 一个实用度量系统将使内存提供给每个进程,使它可以运行其CPU的比例,然后通知调度程序时,进程不能被调度,使调度程序可以决定哪些应该被停用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emery Berger其他文献

Emery Berger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emery Berger', 18)}}的其他基金

Collaborative Research:SHF:Medium:Bringing Python Up to Speed
合作研究:SHF:Medium:加快 Python 速度
  • 批准号:
    1954830
  • 财政年份:
    2020
  • 资助金额:
    $ 47.11万
  • 项目类别:
    Standard Grant
SHF: Small: S3: Statistical and Structural Analysis for Spreadsheets
SHF:小型:S3:电子表格的统计和结构分析
  • 批准号:
    1617892
  • 财政年份:
    2016
  • 资助金额:
    $ 47.11万
  • 项目类别:
    Standard Grant
TWC: Small: Collaborative: EVADE: Evidence-Assisted Detection and Elimination of Security Vulnerabilities
TWC:小型:协作:EVADE:证据辅助检测和消除安全漏洞
  • 批准号:
    1525888
  • 财政年份:
    2015
  • 资助金额:
    $ 47.11万
  • 项目类别:
    Standard Grant
XPS: FULL: SDA: Collaborative Research: SCORE: Scalability-Oriented Optimization
XPS:完整:SDA:协作研究:SCORE:面向可扩展性的优化
  • 批准号:
    1439008
  • 财政年份:
    2014
  • 资助金额:
    $ 47.11万
  • 项目类别:
    Standard Grant
EAGER: Data Debugging
EAGER:数据调试
  • 批准号:
    1349784
  • 财政年份:
    2013
  • 资助金额:
    $ 47.11万
  • 项目类别:
    Standard Grant
EAGER: Programming the Crowd
EAGER:对人群进行编程
  • 批准号:
    1144520
  • 财政年份:
    2012
  • 资助金额:
    $ 47.11万
  • 项目类别:
    Standard Grant
SHF: Large: Collaborative Research: Reliable Performance for Modern Systems
SHF:大型:协作研究:现代系统的可靠性能
  • 批准号:
    1012195
  • 财政年份:
    2010
  • 资助金额:
    $ 47.11万
  • 项目类别:
    Continuing Grant
SHF: Large:Collaborative Research: PASS: Perpetually Available Software Systems
SHF:大型:协作研究:PASS:永久可用的软件系统
  • 批准号:
    0910883
  • 财政年份:
    2009
  • 资助金额:
    $ 47.11万
  • 项目类别:
    Standard Grant
Probabilistically Correct Execution: Hardening Applications Against Error and Attack
概率上正确的执行:强化应用程序以防止错误和攻击
  • 批准号:
    0615211
  • 财政年份:
    2006
  • 资助金额:
    $ 47.11万
  • 项目类别:
    Standard Grant

相似海外基金

Building a foundation for technical implementation strategy for "cooperative safety" in cyber-physical walking training system
为信息物理步行训练系统“协同安全”技术实施策略奠定基础
  • 批准号:
    23K03782
  • 财政年份:
    2023
  • 资助金额:
    $ 47.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Systematization of cooperative next-generation distribution system operation method for mass introduction of photovoltaic power generation
大规模引入光伏发电的新一代配电系统协同运行方法系统化
  • 批准号:
    23H00190
  • 财政年份:
    2023
  • 资助金额:
    $ 47.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of a Human-AI Cooperative Management System for Highly Accurate Estrus and Falling Down Flat Detection in Beef Cattle
肉牛高精度发情、跌倒检测人机协同管理系统开发
  • 批准号:
    22K05915
  • 财政年份:
    2022
  • 资助金额:
    $ 47.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of a dynamic evacuation guidance system based on intelligent and distributed cooperative processing of evacuation guidance devices and disaster prevention sensors
基于疏散引导装置与防灾传感器智能分布式协同处理的动态疏散引导系统构建
  • 批准号:
    22K04639
  • 财政年份:
    2022
  • 资助金额:
    $ 47.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
AI-based framework for drone intent classification using a non-cooperative radar system
使用非合作雷达系统进行无人机意图分类的基于人工智能的框架
  • 批准号:
    2744569
  • 财政年份:
    2022
  • 资助金额:
    $ 47.11万
  • 项目类别:
    Studentship
Cooperative Strategy Learning and Knowledge Evolution to Adapt to Dynamism in Unknown Cooperation and Environment in Multi-agent System
多智能体系统中适应未知合作和环境动态的合作策略学习和知识进化
  • 批准号:
    21KK0206
  • 财政年份:
    2022
  • 资助金额:
    $ 47.11万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Cyber-Physical System Architecture for Cooperative Driving
协同驾驶的信息物理系统架构
  • 批准号:
    21H03423
  • 财政年份:
    2021
  • 资助金额:
    $ 47.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Educational Program that Creates a Cooperative System between the Director of Nursing and Public Health Nurses
开发建立护理主任和公共卫生护士之间合作系统的教育计划
  • 批准号:
    21K10576
  • 财政年份:
    2021
  • 资助金额:
    $ 47.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Controllable imaging system of invisible element components by autonomous cooperative acquisition of dynamic light transport
通过动态光传输自主协作采集的不可见元素组件的可控成像系统
  • 批准号:
    21K19799
  • 财政年份:
    2021
  • 资助金额:
    $ 47.11万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Cooperative autonomous learning system for collaborative robots using task context learning and task memory management
使用任务上下文学习和任务记忆管理的协作机器人的协作自主学习系统
  • 批准号:
    20J13760
  • 财政年份:
    2020
  • 资助金额:
    $ 47.11万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了