III: Medium: Collaborative Research: Mining and Leveraging Knowledge Hypercubes for Complex Applications

III:媒介:协作研究:挖掘和利用知识超立方体进行复杂应用

基本信息

  • 批准号:
    1955151
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Knowledge repository refers to a machine-readable structure that stores knowledge about various entities (e.g., organizations, events, genes), which facilitates efficient information seeking. In many domains, knowledge varies with respect to contexts, and a flat structure that is commonly adopted by existing knowledge repositories cannot capture the complicated knowledge associated with different contexts. To make knowledge resources more findable, accessible, interoperable, and reusable (FAIR), this project plans to conceptualize a new structure, Knowledge Hypercube, for organizing and retrieving knowledge that could support complex applications in various domains. A knowledge hybercube organizes knowledge with respect to selected important dimensions (e.g., time, locations, conditions), and thus it allows people to easily access knowledge in any context, encapsulate distinctive entities and facts, and conduct cross-dimensional comparison and inference. This project impacts how people find and use knowledge, advances knowledge-based data analytics approaches, and benefits a wide range of domains which have gigantic literature and unsolved complex tasks by building a bridge between them. Knowledge hypercubes can also support educational innovation and contributes to educational tasks such as knowledge tracing. The major objective of this proposal is to form a paradigm of mining knowledge hybercubes from massive collection of text documents and leveraging such hybercubes for complex exploration and prediction tasks. To meet this goal, this project tackles a series of technical challenges. First, to automatically construct a knowledge hypercube from massive texts, innovative weakly supervised approaches are designed to organize text documents based on the hypercube structure, extract open entity and relationship information and organize cell-specific and cross-cell knowledge in a multi-dimensional manner. Second, novel refinement approaches are developed to automatically verify the information quality within and across cells in knowledge hypercubes by cross-checking within the hypercubes and with external information. Third, knowledge hypercubes motivate the development towards new discovery and learning tasks. In particular, the project introduces an automatic knowledge search pipeline for leveraging knowledge hypercubes for downstream prediction tasks, and a hypothesis generation approach for scoring unknown associations between concepts. The planned paradigm is realized in two specific domains (i.e., biomedical and news events), demonstrating the power of knowledge hypercubes to enable new insights into these domains.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
知识库是指存储关于各种实体(例如,组织、事件、基因),这有助于有效的信息搜索。 在许多领域中,知识随着上下文而变化,现有知识库通常采用的扁平结构无法捕获与不同上下文相关联的复杂知识。 为了使知识资源更加可查找、可访问、可互操作和可重用(FAIR),该项目计划概念化一种新结构Knowledge Hypercube,用于组织和检索可以支持各个领域复杂应用程序的知识。 知识超立方体相对于所选择的重要维度(例如,时间、地点、条件),因此它允许人们在任何上下文中轻松访问知识,封装独特的实体和事实,并进行跨维度的比较和推理。 该项目影响人们如何查找和使用知识,推进基于知识的数据分析方法,并通过在它们之间建立桥梁,使具有庞大文献和未解决的复杂任务的广泛领域受益。知识超立方体还可以支持教育创新,并有助于知识追踪等教育任务。该建议的主要目标是形成一个从大量文本文档集合中挖掘知识超立方体的范例,并利用这种超立方体进行复杂的探索和预测任务。为了实现这一目标,该项目解决了一系列技术挑战。首先,为了从海量文本中自动构建知识超立方体,提出了基于超立方体结构的弱监督文本组织方法,提取开放的实体和关系信息,并以多维方式组织单元知识和跨单元知识。 第二,新的细化方法,开发自动验证内和跨细胞的知识超立方体内的交叉检查和外部信息的信息质量。 第三,知识超立方体激励开发新的发现和学习任务。特别是,该项目引入了一个自动知识搜索管道,用于利用知识超立方体进行下游预测任务,以及一种假设生成方法,用于对概念之间的未知关联进行评分。 计划的范例在两个特定领域中实现(即,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
HetMAML: Task-Heterogeneous Model-Agnostic Meta-Learning for Few-Shot Learning Across Modalities
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aidong Zhang其他文献

Scheduling with Compensation in Multi- database Systems
多数据库系统中的补偿调度
  • DOI:
  • 发表时间:
    1993
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aidong Zhang;B. Bhargava
  • 通讯作者:
    B. Bhargava
Principles and Realization Strategies of Intregrating Autonomous Software Systems: Extension of Multidatabase Transaction Management Techniques
集成自治软件系统原理及实现策略:多数据库事务管理技术的扩展
  • DOI:
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aidong Zhang;B. Bhargava
  • 通讯作者:
    B. Bhargava
A View-Based Approach to Relaxing Global Serializability in A View-Based Approach to Relaxing Global Serializability in Multidatabase Systems Multidatabase Systems
基于视图的放宽全局可串行性的方法 在基于视图的多数据库系统中放宽全局可串行性的方法 多数据库系统
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aidong Zhang;E. Pitoura;B. Bhargava
  • 通讯作者:
    B. Bhargava
Facile Access to Multi-Aryl 1H-Pyrrol-2(3H)-ones via Copper-TEMPO Mediated Cascade Annulation of Diarylethanones with Primary Amines and Mechanistic Insights
通过铜-TEMPO介导的二芳基乙酮与伯胺的级联环化轻松获得多芳基 1H-吡咯-2(3H)-酮和机理见解
  • DOI:
    10.1002/ejoc.201601178
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Xing Wang;Chen-Yang Zhang;Hai-Yang Tu;Aidong Zhang
  • 通讯作者:
    Aidong Zhang
Optimization synthesis of phosphorous-containing natural products fosmidomycin and FR900098
含磷天然产物福米霉素和FR900098的优化合成

Aidong Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aidong Zhang', 18)}}的其他基金

An Explainable Machine Learning Platform for Single Cell Data Analysis
用于单细胞数据分析的可解释机器学习平台
  • 批准号:
    2313865
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Proto-OKN Theme 1: A Dynamically-Updated Open Knowledge Network for Health: Integrating Biomedical Insights with Social Determinants of Health
Proto-OKN 主题 1:动态更新的健康开放知识网络:将生物医学见解与健康的社会决定因素相结合
  • 批准号:
    2333740
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
  • 批准号:
    2213700
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
  • 批准号:
    2217071
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
III: Medium: Knowledge-Guided Meta Learning for Multi-Omics Survival Analysis
III:媒介:用于多组学生存分析的知识引导元学习
  • 批准号:
    2106913
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
III: Small: Multimodal Machine Learning for Data with Incomplete Modalities
III:小:针对模态不完整的数据的多模态机器学习
  • 批准号:
    2008208
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
III: Medium: High-Dimensional Interaction Analysis in Bio-Data Sets
III:中:生物数据集中的高维相互作用分析
  • 批准号:
    1924928
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
EAGER: Toward Interpretation of Pairwise Learning
EAGER:对配对学习的解释
  • 批准号:
    1938167
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Knowledge Guided Machine Learning: A Framework for Accelerating Scientific Discovery
协作研究:知识引导机器学习:加速科学发现的框架
  • 批准号:
    1934600
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
III: Medium: High-Dimensional Interaction Analysis in Bio-Data Sets
III:中:生物数据集中的高维相互作用分析
  • 批准号:
    1514204
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
  • 批准号:
    2420691
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
  • 批准号:
    2312865
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312932
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
  • 批准号:
    2348169
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
  • 批准号:
    2347592
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
  • 批准号:
    2312862
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312930
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312501
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
  • 批准号:
    2310113
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了