An Explainable Machine Learning Platform for Single Cell Data Analysis

用于单细胞数据分析的可解释机器学习平台

基本信息

  • 批准号:
    2313865
  • 负责人:
  • 金额:
    $ 80万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

The rapid advances in single-cell RNA sequencing technologies have enabled us to capture gene signatures within the fundamental units of life, single cells. This enables discovery and characterization of cell types including novel ones in multicellular organisms; cell-cell communication and the complex interactions between various cell types in tissues; spatially resolved mapping of organs at the single cell level; and identification of genes and pathways in specific cell types of an organism affected in different contexts. The project introduces a set of novel and explainable machine learning approaches tailored to single-cell data analysis. A platform for explainable machine learning will be developed capable of supporting advanced analysis of single-cell RNA sequencing data and making explainable predictions to directly link phenotypes with genes and pathways in specific cell types. The approaches from this project are translational to any tabular datasets with low-sample-size or many variables, which are prevalent in biological research. The project’s single-cell sequencing data analysis tools, results, and generated data will be excellent exemplars of research projects for exposing undergraduates, graduates, women, and minority students to the development and application of explainable machine learning approaches to advance our understanding of biology at the single cell level. Moreover, development and application of powerful machine leaning tools that yield interpretable results from complex biological datasets and broad accessibility to these methods, tools and results will maximize their value, accelerate biological discovery and advance our understanding of cellular and molecular biology. Specifically, the project will develop a platform of novel machine learning approaches to generate disentangled representations of cells and genes in latent spaces for single-cell RNA sequencing data, which can be used to make explainable predictions of phenotypes. The project contains three synergistic tasks: (1) develop explainable cell-prototype-based approaches to single-cell RNA sequencing data analysis, (2) develop explainable concept-based machine learning models for single-cell RNA sequencing data analysis, and (3) develop machine learning methods to generate representative single cell expression data from bulk RNA sequencing data. Through these tasks, the project develops algorithms, models and tools that enable the full power of state-of-the art explainable machine learning to be applied to single cell data analysis and phenotype prediction at single cell resolution. The algorithms and tools produced by this project will be broadly applicable to predicting genes and pathways at the single cell level in different organisms. The platform can significantly enhance the utility of single-cell data, and assist researchers in analysis of their own datasets. The results of the project can be found at: https://www.cs.virginia.edu/~az9eg/website/projects.html.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
单细胞RNA测序技术的快速发展使我们能够在生命的基本单位,单细胞内捕获基因签名。这使得能够发现和表征细胞类型,包括多细胞生物体中的新细胞类型;细胞间通讯和组织中各种细胞类型之间的复杂相互作用;在单细胞水平上对器官进行空间分辨映射;以及识别在不同背景下受影响的生物体的特定细胞类型中的基因和途径。该项目引入了一套新颖且可解释的机器学习方法,专为单细胞数据分析而设计。将开发一个可解释的机器学习平台,能够支持对单细胞RNA测序数据的高级分析,并做出可解释的预测,将表型与特定细胞类型中的基因和途径直接联系起来。该项目的方法可以转化为任何具有低样本量或多变量的表格数据集,这些数据集在生物研究中很普遍。该项目的单细胞测序数据分析工具,结果和生成的数据将成为研究项目的优秀范例,使本科生,研究生,女性和少数民族学生能够开发和应用可解释的机器学习方法,以促进我们对生物学的理解单细胞水平。此外,开发和应用强大的机器学习工具,从复杂的生物数据集产生可解释的结果,并广泛使用这些方法,工具和结果,将最大限度地发挥其价值,加速生物发现,并促进我们对细胞和分子生物学的理解。具体而言,该项目将开发一个新的机器学习方法平台,以生成单细胞RNA测序数据潜在空间中细胞和基因的解纠缠表示,可用于对表型进行可解释的预测。该项目包含三个协同任务:(1)开发可解释的基于细胞原型的方法来进行单细胞RNA测序数据分析,(2)开发可解释的基于概念的机器学习模型用于单细胞RNA测序数据分析,以及(3)开发机器学习方法,从批量RNA测序数据中生成代表性的单细胞表达数据。通过这些任务,该项目开发了算法,模型和工具,使最先进的可解释机器学习的全部功能能够应用于单细胞数据分析和单细胞分辨率的表型预测。该项目产生的算法和工具将广泛适用于在不同生物体的单细胞水平上预测基因和途径。该平台可以显着提高单细胞数据的实用性,并帮助研究人员分析自己的数据集。该项目的结果可以在以下网站上找到:https://www.cs.virginia.edu/~az9eg/website/projects.html.This奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aidong Zhang其他文献

Scheduling with Compensation in Multi- database Systems
多数据库系统中的补偿调度
  • DOI:
  • 发表时间:
    1993
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aidong Zhang;B. Bhargava
  • 通讯作者:
    B. Bhargava
Principles and Realization Strategies of Intregrating Autonomous Software Systems: Extension of Multidatabase Transaction Management Techniques
集成自治软件系统原理及实现策略:多数据库事务管理技术的扩展
  • DOI:
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aidong Zhang;B. Bhargava
  • 通讯作者:
    B. Bhargava
A View-Based Approach to Relaxing Global Serializability in A View-Based Approach to Relaxing Global Serializability in Multidatabase Systems Multidatabase Systems
基于视图的放宽全局可串行性的方法 在基于视图的多数据库系统中放宽全局可串行性的方法 多数据库系统
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aidong Zhang;E. Pitoura;B. Bhargava
  • 通讯作者:
    B. Bhargava
Facile Access to Multi-Aryl 1H-Pyrrol-2(3H)-ones via Copper-TEMPO Mediated Cascade Annulation of Diarylethanones with Primary Amines and Mechanistic Insights
通过铜-TEMPO介导的二芳基乙酮与伯胺的级联环化轻松获得多芳基 1H-吡咯-2(3H)-酮和机理见解
  • DOI:
    10.1002/ejoc.201601178
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Xing Wang;Chen-Yang Zhang;Hai-Yang Tu;Aidong Zhang
  • 通讯作者:
    Aidong Zhang
Optimization synthesis of phosphorous-containing natural products fosmidomycin and FR900098
含磷天然产物福米霉素和FR900098的优化合成

Aidong Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aidong Zhang', 18)}}的其他基金

Proto-OKN Theme 1: A Dynamically-Updated Open Knowledge Network for Health: Integrating Biomedical Insights with Social Determinants of Health
Proto-OKN 主题 1:动态更新的健康开放知识网络:将生物医学见解与健康的社会决定因素相结合
  • 批准号:
    2333740
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
  • 批准号:
    2213700
  • 财政年份:
    2022
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
  • 批准号:
    2217071
  • 财政年份:
    2022
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
III: Medium: Knowledge-Guided Meta Learning for Multi-Omics Survival Analysis
III:媒介:用于多组学生存分析的知识引导元学习
  • 批准号:
    2106913
  • 财政年份:
    2021
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
III: Small: Multimodal Machine Learning for Data with Incomplete Modalities
III:小:针对模态不完整的数据的多模态机器学习
  • 批准号:
    2008208
  • 财政年份:
    2020
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Mining and Leveraging Knowledge Hypercubes for Complex Applications
III:媒介:协作研究:挖掘和利用知识超立方体进行复杂应用
  • 批准号:
    1955151
  • 财政年份:
    2020
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
III: Medium: High-Dimensional Interaction Analysis in Bio-Data Sets
III:中:生物数据集中的高维相互作用分析
  • 批准号:
    1924928
  • 财政年份:
    2019
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
EAGER: Toward Interpretation of Pairwise Learning
EAGER:对配对学习的解释
  • 批准号:
    1938167
  • 财政年份:
    2019
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: Knowledge Guided Machine Learning: A Framework for Accelerating Scientific Discovery
协作研究:知识引导机器学习:加速科学发现的框架
  • 批准号:
    1934600
  • 财政年份:
    2019
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
III: Medium: High-Dimensional Interaction Analysis in Bio-Data Sets
III:中:生物数据集中的高维相互作用分析
  • 批准号:
    1514204
  • 财政年份:
    2015
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Explainable machine learning for electrification of everything
可解释的机器学习,实现万物电气化
  • 批准号:
    LP230100439
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Linkage Projects
Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
  • 批准号:
    BB/Y513763/1
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Research Grant
SHF: Small: Explainable Machine Learning for Better Design of Very Large Scale Integrated Circuits
SHF:小:可解释的机器学习,用于更好地设计超大规模集成电路
  • 批准号:
    2322713
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Conference: Toward Explainable, Reliable, and Sustainable Machine Learning for Signal and Data Science
会议:迈向信号和数据科学的可解释、可靠和可持续的机器学习
  • 批准号:
    2321063
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
A machine learning framework for trustworthy bio-medical risk factor identification – robust, explainable, and human-centred detection of endo- and phenotypes in lung cancer
用于识别值得信赖的生物医学风险因素的机器学习框架——对肺癌的内型和表型进行稳健、可解释且以人为本的检测
  • 批准号:
    10068410
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Collaborative R&D
Development of an Explainable Machine Learning Method to Predict Disease Risk from Genotype
开发一种可解释的机器学习方法来根据基因型预测疾病风险
  • 批准号:
    22KJ0657
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Data-efficient and explainable machine learning
数据高效且可解释的机器学习
  • 批准号:
    2644086
  • 财政年份:
    2022
  • 资助金额:
    $ 80万
  • 项目类别:
    Studentship
State-dependent decadal predictability identified with explainable machine learning
通过可解释的机器学习确定依赖于状态的十年可预测性
  • 批准号:
    2210068
  • 财政年份:
    2022
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Explainable Machine learning models for AI native radio access technologies (XAI-RAT)
AI 原生无线电接入技术 (XAI-RAT) 的可解释机器学习模型
  • 批准号:
    RGPIN-2022-04645
  • 财政年份:
    2022
  • 资助金额:
    $ 80万
  • 项目类别:
    Discovery Grants Program - Individual
Explainable Machine Learning Models For Predicting Malicious Uniform Resource Locators
用于预测恶意统一资源定位器的可解释机器学习模型
  • 批准号:
    575554-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 80万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了