III: Medium: High-Dimensional Interaction Analysis in Bio-Data Sets

III:中:生物数据集中的高维相互作用分析

基本信息

  • 批准号:
    1514204
  • 负责人:
  • 金额:
    $ 89.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-15 至 2019-04-30
  • 项目状态:
    已结题

项目摘要

Discovering interactions between the attributes in a data set provides insight into the underlying structure of the data and explains the relationships between the attributes. This project develops multi-disciplinary approaches that integrate computer science, statistics, and epidemiology techniques to mine interaction relationships among attributes and phenotypes (traits or class labels) in biological data sets. Specifically, this project develops innovative and statistically sound methodologies for mining novel interactions within attributes or between attributes and phenotypes to help identify critical factors in biological applications. In particular, the novel analysis methods can enable the genetic and environmental interactions underlying a range of complex diseases to be delineated. The research activities of this project can also promote the integration of biology, computer science, and statistics, which is highly significant to many applications. The project will formulate various metrics that enable efficient pruning and searching in the multi-dimensional combinatorial space for identifying significant interaction relationships. This enables highly effective approaches that build search-based trees or identify highly correlated subspaces to detect meaningful local interactions that may not be significant considering the whole data sets but are strongly interacted with traits on a subset of data. This enables comparison of data from multiple different groups such as based on age, race, or other properties. It is important to find both common and different interactions in different groups so that effective methods can be developed for targeted groups. The methods developed will detect complex interactions between attributes in multiple groups simultaneously by capturing both their commonalities and differences in joint matrix factorization or deep learning models. These approaches are remarkably powerful for biological applications, such as detecting gene-gene interactions and gene-environmental interactions that lead to breast cancer. The concept of interaction is also ubiquitous and important in many scientific disciplines ranging from economics, sociology and physics, to the pharmaceutical sciences. The novel approaches and analysis tools developed in this project are useful for finding out any interaction relationships between attributes associated with phenotype labels or without phenotype labels. These approaches and tools are general and are applicable to a variety of applications.
发现数据集中属性之间的交互可以深入了解数据的底层结构,并解释属性之间的关系。本项目开发多学科方法,整合计算机科学、统计学和流行病学技术,以挖掘生物数据集中属性和表型(性状或类标签)之间的相互作用关系。具体而言,该项目开发了创新和统计上合理的方法,用于挖掘属性内部或属性与表型之间的新相互作用,以帮助确定生物学应用中的关键因素。特别是,新的分析方法可以使一系列复杂疾病的遗传和环境相互作用得以描述。该项目的研究活动还可以促进生物学、计算机科学和统计学的融合,这对许多应用都具有重要意义。该项目将制定各种指标,以便在多维组合空间中进行有效的修剪和搜索,以确定重要的交互关系。这使得构建基于搜索的树或识别高度相关的子空间的高效方法能够检测到有意义的局部交互,这些交互可能在整个数据集中并不重要,但与数据子集上的特征有强烈的交互。这样就可以比较来自多个不同组的数据,例如基于年龄、种族或其他属性的数据。重要的是找到不同群体中共同的和不同的相互作用,以便为目标群体制定有效的方法。开发的方法将通过捕获联合矩阵分解或深度学习模型中的共性和差异,同时检测多个组中属性之间的复杂相互作用。这些方法在生物学应用方面非常强大,例如检测导致乳腺癌的基因-基因相互作用和基因-环境相互作用。从经济学、社会学、物理学到制药科学,相互作用的概念在许多科学学科中也无处不在,而且很重要。本项目开发的新方法和分析工具对于发现与表型标签相关或没有表型标签的属性之间的任何相互作用关系非常有用。这些方法和工具是通用的,适用于各种应用程序。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aidong Zhang其他文献

Scheduling with Compensation in Multi- database Systems
多数据库系统中的补偿调度
  • DOI:
  • 发表时间:
    1993
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aidong Zhang;B. Bhargava
  • 通讯作者:
    B. Bhargava
Principles and Realization Strategies of Intregrating Autonomous Software Systems: Extension of Multidatabase Transaction Management Techniques
集成自治软件系统原理及实现策略:多数据库事务管理技术的扩展
  • DOI:
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aidong Zhang;B. Bhargava
  • 通讯作者:
    B. Bhargava
A View-Based Approach to Relaxing Global Serializability in A View-Based Approach to Relaxing Global Serializability in Multidatabase Systems Multidatabase Systems
基于视图的放宽全局可串行性的方法 在基于视图的多数据库系统中放宽全局可串行性的方法 多数据库系统
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aidong Zhang;E. Pitoura;B. Bhargava
  • 通讯作者:
    B. Bhargava
Facile Access to Multi-Aryl 1H-Pyrrol-2(3H)-ones via Copper-TEMPO Mediated Cascade Annulation of Diarylethanones with Primary Amines and Mechanistic Insights
通过铜-TEMPO介导的二芳基乙酮与伯胺的级联环化轻松获得多芳基 1H-吡咯-2(3H)-酮和机理见解
  • DOI:
    10.1002/ejoc.201601178
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Xing Wang;Chen-Yang Zhang;Hai-Yang Tu;Aidong Zhang
  • 通讯作者:
    Aidong Zhang
Design of a deployable underwater robot for the recovery of autonomous underwater vehicles based on origami technique
基于折纸技术的自主水下航行器回收可展开水下机器人设计

Aidong Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aidong Zhang', 18)}}的其他基金

An Explainable Machine Learning Platform for Single Cell Data Analysis
用于单细胞数据分析的可解释机器学习平台
  • 批准号:
    2313865
  • 财政年份:
    2023
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Continuing Grant
Proto-OKN Theme 1: A Dynamically-Updated Open Knowledge Network for Health: Integrating Biomedical Insights with Social Determinants of Health
Proto-OKN 主题 1:动态更新的健康开放知识网络:将生物医学见解与健康的社会决定因素相结合
  • 批准号:
    2333740
  • 财政年份:
    2023
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
  • 批准号:
    2213700
  • 财政年份:
    2022
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
  • 批准号:
    2217071
  • 财政年份:
    2022
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Continuing Grant
III: Medium: Knowledge-Guided Meta Learning for Multi-Omics Survival Analysis
III:媒介:用于多组学生存分析的知识引导元学习
  • 批准号:
    2106913
  • 财政年份:
    2021
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Continuing Grant
III: Small: Multimodal Machine Learning for Data with Incomplete Modalities
III:小:针对模态不完整的数据的多模态机器学习
  • 批准号:
    2008208
  • 财政年份:
    2020
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Mining and Leveraging Knowledge Hypercubes for Complex Applications
III:媒介:协作研究:挖掘和利用知识超立方体进行复杂应用
  • 批准号:
    1955151
  • 财政年份:
    2020
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Continuing Grant
III: Medium: High-Dimensional Interaction Analysis in Bio-Data Sets
III:中:生物数据集中的高维相互作用分析
  • 批准号:
    1924928
  • 财政年份:
    2019
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Standard Grant
EAGER: Toward Interpretation of Pairwise Learning
EAGER:对配对学习的解释
  • 批准号:
    1938167
  • 财政年份:
    2019
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Knowledge Guided Machine Learning: A Framework for Accelerating Scientific Discovery
协作研究:知识引导机器学习:加速科学发现的框架
  • 批准号:
    1934600
  • 财政年份:
    2019
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Continuing Grant

相似海外基金

Scaff-Net: 3 Dimensional multiphoton polymerisation printed scaffolds for medium throughput recording from stem cell derived human cortical networks.
Scaff-Net:3 维多光子聚合打印支架,用于从干细胞衍生的人类皮质网络进行中等通量记录。
  • 批准号:
    EP/X018385/1
  • 财政年份:
    2023
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Research Grant
RI: Medium: Collaborative Research:Algorithmic High-Dimensional Statistics: Optimality, Computtional Barriers, and High-Dimensional Corrections
RI:中:协作研究:算法高维统计:最优性、计算障碍和高维校正
  • 批准号:
    2218713
  • 财政年份:
    2022
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Towards designing optimal learning procedures via precise medium-dimensional asymptotic analysis
协作研究:通过精确的中维渐近分析设计最佳学习程序
  • 批准号:
    2210505
  • 财政年份:
    2022
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Standard Grant
Collaborative Research: IIS: RI: Medium: Lifelong learning with hyper dimensional computing
协作研究:IIS:RI:中:超维计算的终身学习
  • 批准号:
    2211387
  • 财政年份:
    2022
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Standard Grant
Collaborative Research: IIS: RI: Medium: Lifelong learning with hyper dimensional computing
协作研究:IIS:RI:中:超维计算的终身学习
  • 批准号:
    2211386
  • 财政年份:
    2022
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Towards designing optimal learning procedures via precise medium-dimensional asymptotic analysis
协作研究:通过精确的中维渐近分析设计最佳学习程序
  • 批准号:
    2210506
  • 财政年份:
    2022
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Standard Grant
Collaborative Research: FTE: Medium: Three Dimensional Algorithmic Assembly and Information Storage
合作研究:FTE:媒介:三维算法组装和信息存储
  • 批准号:
    2107393
  • 财政年份:
    2021
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: FTE: Medium: Three Dimensional Algorithmic Assembly and Information Storage
合作研究:FTE:媒介:三维算法组装和信息存储
  • 批准号:
    2106790
  • 财政年份:
    2021
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Algorithmic High-Dimensional Robust Statistics
合作研究:AF:中:算法高维稳健统计
  • 批准号:
    2107547
  • 财政年份:
    2021
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Algorithmic High-Dimensional Robust Statistics
合作研究:AF:中:算法高维稳健统计
  • 批准号:
    2107079
  • 财政年份:
    2021
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了