CCF Core: Small: Hardware/Software Co-Design for Sustainability at the Edge
CCF 核心:小型:硬件/软件协同设计,实现边缘的可持续性
基本信息
- 批准号:2233808
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-11-01 至 2025-10-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Due to the wide proliferation of cloud and now edge servers, the development of sustainable acceleration methods for edge and cloud computing and artificial intelligence (AI) acceleration is beneficial to society broadly and the computer science community, in particular. Reducing carbon and methane emissions is important to reaching environmental goals for reducing warming for which targets of 2030 and 2050 have been set. This project tackles the broader implications of the growing popularity of edge and cloud computing for executing AI to establish a sustainable computing system design methodology beyond pure energy efficiency. Unlike solely energy-efficient designs that focus on reducing power consumption and carbon emissions as a by-product, this project will build a hardware/software co-design framework to generate the optimal hardware and algorithm designs that meet specific constraints of functionality, performance, sustainability, and other system requirements. The framework will guide future sustainable hardware design. Towards this goal, the proposed framework engages holistic co-design efforts across four levels - modeling, algorithm, scheduling, and hardware.By introducing new synergies between computing paradigms and emerging AI applications, the outcomes of this research will benefit the entire AI industry, from hardware development to algorithm design and the applications for the end-users. The proposed co-design framework will be the first research in the community to build holistically sustainable AI systems which are recently recognized as emerging in importance. The success of this project will pave the road for future sustainable computing system design. The educational efforts aim at cultivating students' interests in the study of sustainable computing, contemporary computer architecture, and artificial intelligence. The existing curricula of computer organization, algorithms, and computing systems will be enhanced by the interdisciplinary research topics on sustainable computing, edge computing, and machine learning, as well as the hands-on experiences in building the simulation prototypes. Special attention will be given to recruiting underrepresented groups and enriching studentsí study experiences through new education forums.This project is funded by funds allocated to Design for Sustainable Computing (NSF 22-060)This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于云和现在的边缘服务器的广泛扩散,用于边缘和云计算和人工智能(AI)加速的可持续加速方法的开发对社会尤其是计算机科学界有益。减少碳和甲烷排放对于达到减少2030年和2050年目标的变暖的环境目标很重要。该项目解决了边缘和云计算日益普及的更广泛的含义,以执行AI,以建立超出纯能效率的可持续计算系统设计方法。与仅仅用于减少功耗和碳排放作为副产品的唯一节能设计不同,该项目将建立硬件/软件共同设计框架,以生成最佳的硬件和算法设计,以符合特定的功能,性能,可持续性和其他系统要求。该框架将指导未来的可持续硬件设计。 Towards this goal, the proposed framework engages holistic co-design efforts across four levels - modeling, algorithm, scheduling, and hardware.By introducing new synergies between computing paradigms and emerging AI applications, the outcomes of this research will benefit the entire AI industry, from hardware development to algorithm design and the applications for the end-users.拟议的共同设计框架将是社区中首次建立整体可持续的AI系统的研究,这些系统最近被认为是重要的。该项目的成功将为未来的可持续计算系统设计铺平道路。教育工作旨在培养学生对可持续计算,当代计算机架构和人工智能的研究的兴趣。有关可持续计算,边缘计算和机器学习的跨学科研究主题以及构建模拟原型的动手经验,将增强计算机组织,算法和计算系统的现有课程。将特别关注招募人数不足的小组并通过新的教育论坛丰富学生的学习经验。该项目由分配给可持续计算设计设计的资金(NSF 22-060)资助,该奖项反映了NSF的法定任务,并通过该基金会的知识优点和广泛的影响来评估NSF的法定任务。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hai Li其他文献
Concurrent pulmonary benign metastasizing leiomyoma and primary lung adenocarcinoma: a case report.
并发肺良性转移性平滑肌瘤和原发性肺腺癌:病例报告。
- DOI:
10.21037/acr.2018.04.03 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Aiping Chen;Tao Sun;Xuehui Pu;Hai Li;Tong;Hong Yu - 通讯作者:
Hong Yu
Inter-rater and Intra-rater Reliability of the Chinese Version of the Action Research Arm Test in People With Stroke
中国版脑卒中患者行动研究手臂测试的评估者间和评估者内信度
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:3.4
- 作者:
Jiang;Peiming Chen;Tao Zhang;Hai Li;Qiang Lin;Yurong Mao;Dongfeng Huang - 通讯作者:
Dongfeng Huang
Experimental study on the oxidative dissolution of carbonate-rich shale and silicate-rich shale with H2O2, Na2S2O8 and NaClO: Implication to the shale gas recovery with oxidation stimulation
H2O2、Na2S2O8 和 NaClO 氧化溶解富碳酸盐页岩和富硅酸盐页岩的实验研究:对氧化刺激页岩气采收的启示
- DOI:
10.1016/j.jngse.2020.103207 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Sen Yang;Danqing Liu;Yilian Li;Cong Yang;Zhe Yang;Xiaohong Chen;Hai Li;Zhi Tang - 通讯作者:
Zhi Tang
Neural architecture search for in-memory computing-based deep learning accelerators
基于内存计算的深度学习加速器的神经架构搜索
- DOI:
10.1038/s44287-024-00052-7 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
O. Krestinskaya;M. Fouda;Hadjer Benmeziane;Kaoutar El Maghraoui;Abu Sebastian;Wei D. Lu;M. Lanza;Hai Li;Fadi J. Kurdahi;Suhaib A. Fahmy;Ahmed M. Eltawil;K. N. Salama - 通讯作者:
K. N. Salama
Cassini Oval Scanning for High-Speed AFM Imaging
用于高速 AFM 成像的卡西尼椭圆形扫描
- DOI:
10.1109/wcmeim56910.2022.10021465 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Y. Liao;Xianmin Zhang;Longhuan Yu;J. Lai;Benliang Zhu;Hai Li;Zhuobo Yang;Chaoyu Cui;Ke Feng - 通讯作者:
Ke Feng
Hai Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hai Li', 18)}}的其他基金
Conference: NSF Workshop on Hardware-Software Co-design for Neuro-Symbolic Computation
会议:NSF 神经符号计算软硬件协同设计研讨会
- 批准号:
2338640 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Exploiting Synergies Between Machine-Learning Algorithms and Hardware Heterogeneity for High-Performance and Reliable Manycore Computing
合作研究:CNS Core:Medium:利用机器学习算法和硬件异构性之间的协同作用实现高性能和可靠的众核计算
- 批准号:
1955196 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
NSF Convergence Accelerator Track D: A Trusted Integrative Model and Data Sharing Platform for Accelerating AI-Driven Health Innovation
NSF 融合加速器轨道 D:加速人工智能驱动的健康创新的可信集成模型和数据共享平台
- 批准号:
2040588 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
FET: Small: RESONANCE: Accelerating Speech/Language Processing through Collective Training using Commodity ReRAM Chips
FET:小型:共振:使用商用 ReRAM 芯片通过集体训练加速语音/语言处理
- 批准号:
1910299 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
SHF: Small: Cross-Platform Solutions for Pruning and Accelerating Neural Network Models
SHF:小型:用于修剪和加速神经网络模型的跨平台解决方案
- 批准号:
1744082 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: GAMBIT: Efficient Graph Processing on a Memristor-based Embedded Computing Platform
CSR:小型:协作研究:GAMBIT:基于忆阻器的嵌入式计算平台上的高效图形处理
- 批准号:
1717885 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
XPS: DSD: Collaborative Research: NeoNexus: The Next-generation Information Processing System across Digital and Neuromorphic Computing Domains
XPS:DSD:协作研究:NeoNexus:跨数字和神经形态计算领域的下一代信息处理系统
- 批准号:
1744077 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
SHF: Small: Cross-Platform Solutions for Pruning and Accelerating Neural Network Models
SHF:小型:用于修剪和加速神经网络模型的跨平台解决方案
- 批准号:
1615475 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
XPS: DSD: Collaborative Research: NeoNexus: The Next-generation Information Processing System across Digital and Neuromorphic Computing Domains
XPS:DSD:协作研究:NeoNexus:跨数字和神经形态计算领域的下一代信息处理系统
- 批准号:
1337198 - 财政年份:2013
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: SMURFS: Statistical Modeling, SimUlation and Robust Design Techniques For MemriStors
合作研究:SMURFS:忆存的统计建模、模拟和鲁棒设计技术
- 批准号:
1311747 - 财政年份:2013
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
- 批准号:82303969
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
小胶质细胞调控外侧隔核-腹侧被盖区神经环路介导社交奖赏障碍的机制研究
- 批准号:82304474
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肾去交感神经术促进下丘脑室旁核小胶质细胞M2型极化减轻心衰损伤的机制研究
- 批准号:82370387
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
空间邻近标记技术研究莱茵衣藻蛋白核小管与碳浓缩机制的潜在关系
- 批准号:32300220
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
polyG蛋白聚集体诱导小胶质细胞活化在神经元核内包涵体病中的作用及机制研究
- 批准号:82301603
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CCF Core: Small: User-transparent Data Management for Persistence and Crash-consistency in Non-volatile Memories
协作研究:CCF 核心:小型:用户透明的数据管理,以实现非易失性存储器中的持久性和崩溃一致性
- 批准号:
2313146 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CCF Core: Small: User-transparent Data Management for Persistence and Crash-consistency in Non-volatile Memories
协作研究:CCF 核心:小型:用户透明的数据管理,以实现非易失性存储器中的持久性和崩溃一致性
- 批准号:
2415473 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CCF Core: Small: User-transparent Data Management for Persistence and Crash-consistency in Non-volatile Memories
协作研究:CCF 核心:小型:用户透明的数据管理,以实现非易失性存储器中的持久性和崩溃一致性
- 批准号:
2313147 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CCF: SHF: CORE: Small: Towards Systematic Quality Control of Physically Unclonable Functions (PUFs)
CCF:SHF:CORE:小型:迈向物理不可克隆功能(PUF)的系统质量控制
- 批准号:
2244479 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CISE Core: CCF: SHF: Small: Future-Proof Test Corpus Synthesis for Evolving Software
CISE 核心:CCF:SHF:小型:面向发展软件的面向未来的测试语料库合成
- 批准号:
2120955 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant