NSF Convergence Accelerator Track D: A Trusted Integrative Model and Data Sharing Platform for Accelerating AI-Driven Health Innovation
NSF 融合加速器轨道 D:加速人工智能驱动的健康创新的可信集成模型和数据共享平台
基本信息
- 批准号:2040588
- 负责人:
- 金额:$ 96.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The NSF Convergence Accelerator supports use-inspired, team-based, multidisciplinary efforts that address challenges of national importance and will produce deliverables of value to society in the near future. This project, NSF Convergence Accelerator Track D: A Trusted Integrative Model and Data Sharing Platform for Accelerating AI-Driven Health Innovation, will develop a novel health-related federated learning and model-sharing platform, LEARNER, to enable collaborative big data mining for biomedical applications by integrating cross-disciplinary expertise from machine learning, trustworthy AI, and biomedical data science. LEARNER will incorporate novel asynchronous federated learning algorithms based on rigorous theoretical foundations using trustworthy AI techniques, fairness-aware and interpretable machine learning models, large-scale computational strategies and effective software tools to reveal the complex relationships among heterogeneous health data. The project will address critical challenges in exploiting big data for biomedical and health, which include access to large data collections, computational intensity of AI/ML algorithms, complexity of hyperparameter tuning, and the need for effective multidisciplinary expertise and collaboration. Data privacy is another critical concern since health data is intrinsically sensitive and could be exploited to reveal an individual’s identity even when the data are carefully anonymized. LEARNER will include a suite of collaborative data analysis and privacy-preserving mechanisms and tools that will securely support various types of health data analytics, including mechanisms to detect potential data privacy leakages. Machine learning models typically involve complex procedures for optimization and the induced results can be difficult to interpret, and to replicate and reproduce. Novel methods will be employed to improve the interpretability and reproducibility of complex health data analytics models.The project team, with individuals from academia and industry, will develop an interdisciplinary program for training and education of graduate and undergraduate students. A cross-disciplinary course will also be developed on Health Data Science for beginning graduate students and senior undergraduate students from a variety of programs, including Computer Science and Engineering, Informatics, Electrical Engineering, Biomedical Engineering, Biology, and Statistics. The project will put special emphasis on attracting female and under-represented minority students to explore advanced computational technologies in the context of the LEARNER platform. Interested senior undergraduate students will be able to work on well-defined and well-scoped small projects, which will enable them to work with graduate students and the PI team of the project. Such project could also be undertaken as summer projects by undergraduate students in science and engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF融合加速器支持以使用为灵感,以团队为基础,多学科的努力,解决国家重要性的挑战,并将在不久的将来产生对社会有价值的可交付成果。该项目名为NSF融合加速器轨道D:加速人工智能驱动的健康创新的可信集成模型和数据共享平台,将开发一个新的与健康相关的联邦学习和模型共享平台LEARNER,通过整合机器学习、可信人工智能和生物医学数据科学的跨学科专业知识,实现生物医学应用的协作大数据挖掘。学习者将结合基于严格理论基础的新型异步联邦学习算法,使用可信赖的人工智能技术、公平感知和可解释的机器学习模型、大规模计算策略和有效的软件工具来揭示异构健康数据之间的复杂关系。该项目将解决在生物医学和健康领域利用大数据的关键挑战,包括访问大型数据集、人工智能/机器学习算法的计算强度、超参数调整的复杂性,以及对有效的多学科专业知识和协作的需求。数据隐私是另一个关键问题,因为健康数据本质上是敏感的,即使数据经过仔细匿名处理,也可能被利用来暴露个人身份。LEARNER将包括一套协作数据分析和隐私保护机制和工具,这些机制和工具将安全支持各种类型的健康数据分析,包括检测潜在数据隐私泄露的机制。机器学习模型通常涉及复杂的优化过程,并且诱导的结果可能难以解释,难以复制和再现。将采用新颖的方法来提高复杂健康数据分析模型的可解释性和可重复性。该项目团队将与来自学术界和工业界的个人一起,为研究生和本科生的培训和教育制定一个跨学科的计划。此外,还将为来自计算机科学与工程、信息学、电子工程、生物医学工程、生物学和统计学等不同专业的研究生和大四本科生开设一门跨学科的健康数据科学课程。该项目将特别强调吸引女性和少数族裔学生在学习者平台的背景下探索先进的计算技术。感兴趣的大四本科生将能够从事定义明确、范围明确的小型项目,这将使他们能够与研究生和项目PI团队合作。该项目也可作为理工科本科生的暑期项目进行。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Communication-Efficient Projection-Free Algorithm for Nonconvex Constrained Learning Models
非凸约束学习模型的通信高效无投影算法
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Wenhan Xian, Feihu Huang
- 通讯作者:Wenhan Xian, Feihu Huang
A Faster Decentralized Algorithm for Nonconvex Minimax Problems
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Wenhan Xian;Feihu Huang;Yanfu Zhang;Heng Huang
- 通讯作者:Wenhan Xian;Feihu Huang;Yanfu Zhang;Heng Huang
Closing the Generalization Gap of Cross-silo Federated Medical Image Segmentation
- DOI:10.1109/cvpr52688.2022.02020
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:An Xu;Wenqi Li;Pengfei Guo;Dong Yang;H. Roth;Ali Hatamizadeh;Can Zhao;Daguang Xu;Heng Huang;Ziyue Xu-
- 通讯作者:An Xu;Wenqi Li;Pengfei Guo;Dong Yang;H. Roth;Ali Hatamizadeh;Can Zhao;Daguang Xu;Heng Huang;Ziyue Xu-
Step-Ahead Error Feedback for Distributed Training with Compressed Gradient
- DOI:10.1609/aaai.v35i12.17254
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:An Xu;Zhouyuan Huo;Heng Huang
- 通讯作者:An Xu;Zhouyuan Huo;Heng Huang
Detached Error Feedback for Distributed SGD with Random Sparsification
- DOI:
- 发表时间:2020-04
- 期刊:
- 影响因子:0
- 作者:An Xu;Heng Huang
- 通讯作者:An Xu;Heng Huang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hai Li其他文献
Operation Mode of Integrated Energy System with Liquid Air Energy Storage
液态空气储能综合能源系统运行模式
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ning Bai;Yixue Liu;Xiaoxia Jiang;S. Cui;Hai Li;Qing He - 通讯作者:
Qing He
Shortcut-to-adiabaticity quantum tripartite Otto cycle
绝热性量子三方奥托循环的捷径
- DOI:
10.1088/1361-6455/ac3c93 - 发表时间:
2021-11 - 期刊:
- 影响因子:0
- 作者:
Lunan Li;Hai Li;Wenli Yu;Yaming Hao;Lei Li;Jian Zou - 通讯作者:
Jian Zou
ROS-Based Control Implementation of an Soft Gripper with Force Feedback
基于 ROS 的力反馈软夹具控制实现
- DOI:
10.1007/978-3-030-89095-7_51 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yue Qiu;Xianmin Zhang;Hai Li;Rixin Wang - 通讯作者:
Rixin Wang
Preparation and Characterization of GLUT1-mediated Novel Brain Targeting Magnetic Nanoparticles
GLUT1介导的新型脑靶向磁性纳米颗粒的制备和表征
- DOI:
10.2174/1570180815666180322113934 - 发表时间:
2018-10 - 期刊:
- 影响因子:1
- 作者:
Zhang Li;Zhao Yi;Yue Qiming;Fu Qiuyi;Hai Li;Guo Li;Wang Qiantao;Wu Yong - 通讯作者:
Wu Yong
Automatic three-dimensional imaging for blastomere identification in early-stage embryos based on brightfield microscopy
基于明场显微镜的早期胚胎卵裂球自动三维成像识别
- DOI:
10.1016/j.optlaseng.2020.106093 - 发表时间:
2020-07 - 期刊:
- 影响因子:4.6
- 作者:
Sheng Yao;James K. Mills;Ihab Abu Ajamieh;Hai Li;Xianmin Zhang - 通讯作者:
Xianmin Zhang
Hai Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hai Li', 18)}}的其他基金
Conference: NSF Workshop on Hardware-Software Co-design for Neuro-Symbolic Computation
会议:NSF 神经符号计算软硬件协同设计研讨会
- 批准号:
2338640 - 财政年份:2023
- 资助金额:
$ 96.61万 - 项目类别:
Standard Grant
CCF Core: Small: Hardware/Software Co-Design for Sustainability at the Edge
CCF 核心:小型:硬件/软件协同设计,实现边缘的可持续性
- 批准号:
2233808 - 财政年份:2022
- 资助金额:
$ 96.61万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Exploiting Synergies Between Machine-Learning Algorithms and Hardware Heterogeneity for High-Performance and Reliable Manycore Computing
合作研究:CNS Core:Medium:利用机器学习算法和硬件异构性之间的协同作用实现高性能和可靠的众核计算
- 批准号:
1955196 - 财政年份:2020
- 资助金额:
$ 96.61万 - 项目类别:
Continuing Grant
FET: Small: RESONANCE: Accelerating Speech/Language Processing through Collective Training using Commodity ReRAM Chips
FET:小型:共振:使用商用 ReRAM 芯片通过集体训练加速语音/语言处理
- 批准号:
1910299 - 财政年份:2019
- 资助金额:
$ 96.61万 - 项目类别:
Standard Grant
SHF: Small: Cross-Platform Solutions for Pruning and Accelerating Neural Network Models
SHF:小型:用于修剪和加速神经网络模型的跨平台解决方案
- 批准号:
1744082 - 财政年份:2017
- 资助金额:
$ 96.61万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: GAMBIT: Efficient Graph Processing on a Memristor-based Embedded Computing Platform
CSR:小型:协作研究:GAMBIT:基于忆阻器的嵌入式计算平台上的高效图形处理
- 批准号:
1717885 - 财政年份:2017
- 资助金额:
$ 96.61万 - 项目类别:
Standard Grant
XPS: DSD: Collaborative Research: NeoNexus: The Next-generation Information Processing System across Digital and Neuromorphic Computing Domains
XPS:DSD:协作研究:NeoNexus:跨数字和神经形态计算领域的下一代信息处理系统
- 批准号:
1744077 - 财政年份:2017
- 资助金额:
$ 96.61万 - 项目类别:
Standard Grant
SHF: Small: Cross-Platform Solutions for Pruning and Accelerating Neural Network Models
SHF:小型:用于修剪和加速神经网络模型的跨平台解决方案
- 批准号:
1615475 - 财政年份:2016
- 资助金额:
$ 96.61万 - 项目类别:
Standard Grant
XPS: DSD: Collaborative Research: NeoNexus: The Next-generation Information Processing System across Digital and Neuromorphic Computing Domains
XPS:DSD:协作研究:NeoNexus:跨数字和神经形态计算领域的下一代信息处理系统
- 批准号:
1337198 - 财政年份:2013
- 资助金额:
$ 96.61万 - 项目类别:
Standard Grant
Collaborative Research: SMURFS: Statistical Modeling, SimUlation and Robust Design Techniques For MemriStors
合作研究:SMURFS:忆存的统计建模、模拟和鲁棒设计技术
- 批准号:
1311747 - 财政年份:2013
- 资助金额:
$ 96.61万 - 项目类别:
Standard Grant
相似海外基金
NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
- 批准号:
2343806 - 财政年份:2024
- 资助金额:
$ 96.61万 - 项目类别:
Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
- 批准号:
2344284 - 财政年份:2024
- 资助金额:
$ 96.61万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
- 批准号:
2344472 - 财政年份:2024
- 资助金额:
$ 96.61万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
- 批准号:
2344476 - 财政年份:2024
- 资助金额:
$ 96.61万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
- 批准号:
2344256 - 财政年份:2024
- 资助金额:
$ 96.61万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
- 批准号:
2344357 - 财政年份:2024
- 资助金额:
$ 96.61万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: Water-responsive Materials for Evaporation Energy Harvesting
NSF 收敛加速器轨道 M:用于蒸发能量收集的水响应材料
- 批准号:
2344305 - 财政年份:2024
- 资助金额:
$ 96.61万 - 项目类别:
Standard Grant
NSF Convergence Accelerator (L): Innovative approach to monitor methane emissions from livestock using an advanced gravimetric microsensor.
NSF Convergence Accelerator (L):使用先进的重力微传感器监测牲畜甲烷排放的创新方法。
- 批准号:
2344426 - 财政年份:2024
- 资助金额:
$ 96.61万 - 项目类别:
Standard Grant
NSF Convergence Accelerator, Track K: Mapping the nation's wetlands for equitable water quality, monitoring, conservation, and policy development
NSF 融合加速器,K 轨道:绘制全国湿地地图,以实现公平的水质、监测、保护和政策制定
- 批准号:
2344174 - 财政年份:2024
- 资助金额:
$ 96.61万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: A new biomanufacturing process for making precipitated calcium carbonate and plant-based compounds that support human health
NSF Convergence Accelerator Track M:一种新的生物制造工艺,用于制造支持人类健康的沉淀碳酸钙和植物基化合物
- 批准号:
2344228 - 财政年份:2024
- 资助金额:
$ 96.61万 - 项目类别:
Standard Grant














{{item.name}}会员




