FET: Small: RESONANCE: Accelerating Speech/Language Processing through Collective Training using Commodity ReRAM Chips
FET:小型:共振:使用商用 ReRAM 芯片通过集体训练加速语音/语言处理
基本信息
- 批准号:1910299
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Moving machine learning techniques from the computing cloud down to edge computing nodes closer to the user is highly desirable in many use cases that require quick responses from the collected data sets. A typical use scenario is multi-task applications where a cloud server retains well-trained large-scale models, which are deployed in edge devices based on specific local needs. Examples include language translation or speech recognition with accents in multi-language audio conferences. However, supporting multi-task application on edge devices is challenging due to the associated high computational cost and large variety of involved models. Very little effort has been spent on the corresponding hardware design, especially for supporting multi-task speech and natural language processing (NLP) applications on edge compute devices. This research aims to design a novel computing system dedicated to such multi-task applications, particularly on accelerating speech/NLP, by combining innovations in both algorithm and hardware domains. The study benefits big data research, and industry at large by inspiring an interactive design philosophy between the designs of speech/NLP algorithms and the corresponding computing platforms. Undergraduate and graduate students involved in this research will be trained for the next-generation information technology workforce. Different from conventional edge computing devices that mainly focuses on balancing the workloads between the cloud and the edge devices and optimizing the communication in between, this project concentrates on how to efficiently decompose and compress the task-specific sub-models extracted from a large multi-task model in the cloud so that deployment of the edge devices meet the functionality and performance needs under the specific hardware constraint. More specifically, the algorithm-level innovations enable a decomposable speech/NLP model that always assures proper function and performance in resource-limited edge devices, while the hardware-level innovations allow these devices to efficiently support speech/NLP multi-task applications and unleash the great potential of Resistive Random Access Memory (ReRAM)-based computing platforms. During the real-time operation, the model on the edge device can be scaled-up or shrunk-down to accommodate the dynamic hardware environment and user needs. The research leads to a holistic methodology across algorithm redesign, hardware acceleration, and an integrated software/hardware co-design.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
将机器学习技术从计算云向下移动到更接近用户的边缘计算节点,在许多需要从收集的数据集快速响应的用例中是非常可取的。一个典型的使用场景是多任务应用程序,其中云服务器保留了经过良好训练的大规模模型,这些模型根据特定的本地需求部署在边缘设备中。 示例包括多语言音频会议中的语言翻译或带有口音的语音识别。然而,在边缘设备上支持多任务应用是具有挑战性的,因为相关的高计算成本和各种各样的涉及模型。在相应的硬件设计上花费的精力很少,特别是在边缘计算设备上支持多任务语音和自然语言处理(NLP)应用程序。本研究旨在通过结合算法和硬件领域的创新,设计一种专用于此类多任务应用的新型计算系统,特别是在加速语音/NLP方面。该研究通过激发语音/NLP算法设计与相应计算平台之间的交互式设计理念,使大数据研究和整个行业受益。参与这项研究的本科生和研究生将接受下一代信息技术劳动力的培训。与传统的边缘计算设备主要侧重于平衡云和边缘设备之间的工作负载并优化两者之间的通信不同,该项目专注于如何有效地分解和压缩从云中的大型多任务模型中提取的特定任务子模型,以便边缘设备的部署满足特定硬件约束下的功能和性能需求。更具体地说,算法级创新实现了可分解的语音/NLP模型,始终确保资源有限的边缘设备的正确功能和性能,而硬件级创新允许这些设备有效地支持语音/NLP多任务应用,并释放基于电阻式随机存取存储器(ReRAM)的计算平台的巨大潜力。在实时操作期间,边缘设备上的模型可以放大或缩小,以适应动态硬件环境和用户需求。该研究为算法重新设计、硬件加速和集成的软件/硬件协同设计提供了一种整体方法。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
BSQ: Exploring Bit-Level Sparsity for Mixed-Precision Neural Network Quantization
- DOI:
- 发表时间:2021-02
- 期刊:
- 影响因子:0
- 作者:Huanrui Yang;Lin Duan;Yiran Chen;Hai Li
- 通讯作者:Huanrui Yang;Lin Duan;Yiran Chen;Hai Li
SpikeSen: Low-Latency In-Sensor-Intelligence Design With Neuromorphic Spiking Neurons
SpikeSen:具有神经形态尖峰神经元的低延迟传感器内智能设计
- DOI:10.1109/tcsii.2023.3235888
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Li, Ziru;Zheng, Qilin;Chen, Yiran;Li, Hai
- 通讯作者:Li, Hai
Processing-in-Memory Technology for Machine Learning: From Basic to ASIC
用于机器学习的内存处理技术:从基础到 ASIC
- DOI:10.1109/tcsii.2022.3168404
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Taylor, Brady;Zheng, Qilin;Li, Ziru;Li, Shiyu;Chen, Yiran
- 通讯作者:Chen, Yiran
Parallelism in Deep Learning Accelerators
- DOI:10.1109/asp-dac47756.2020.9045206
- 发表时间:2020-01
- 期刊:
- 影响因子:0
- 作者:Linghao Song;Fan Chen;Yiran Chen;H. Li
- 通讯作者:Linghao Song;Fan Chen;Yiran Chen;H. Li
An Efficient 3D ReRAM Convolution Processor Design for Binarized Weight Networks
- DOI:10.1109/tcsii.2021.3067840
- 发表时间:2021-05-01
- 期刊:
- 影响因子:4.4
- 作者:Kim, Bokyung;Hanson, Edward;Li, Hai
- 通讯作者:Li, Hai
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hai Li其他文献
Operation Mode of Integrated Energy System with Liquid Air Energy Storage
液态空气储能综合能源系统运行模式
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ning Bai;Yixue Liu;Xiaoxia Jiang;S. Cui;Hai Li;Qing He - 通讯作者:
Qing He
Shortcut-to-adiabaticity quantum tripartite Otto cycle
绝热性量子三方奥托循环的捷径
- DOI:
10.1088/1361-6455/ac3c93 - 发表时间:
2021-11 - 期刊:
- 影响因子:0
- 作者:
Lunan Li;Hai Li;Wenli Yu;Yaming Hao;Lei Li;Jian Zou - 通讯作者:
Jian Zou
ROS-Based Control Implementation of an Soft Gripper with Force Feedback
基于 ROS 的力反馈软夹具控制实现
- DOI:
10.1007/978-3-030-89095-7_51 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yue Qiu;Xianmin Zhang;Hai Li;Rixin Wang - 通讯作者:
Rixin Wang
Preparation and Characterization of GLUT1-mediated Novel Brain Targeting Magnetic Nanoparticles
GLUT1介导的新型脑靶向磁性纳米颗粒的制备和表征
- DOI:
10.2174/1570180815666180322113934 - 发表时间:
2018-10 - 期刊:
- 影响因子:1
- 作者:
Zhang Li;Zhao Yi;Yue Qiming;Fu Qiuyi;Hai Li;Guo Li;Wang Qiantao;Wu Yong - 通讯作者:
Wu Yong
Automatic three-dimensional imaging for blastomere identification in early-stage embryos based on brightfield microscopy
基于明场显微镜的早期胚胎卵裂球自动三维成像识别
- DOI:
10.1016/j.optlaseng.2020.106093 - 发表时间:
2020-07 - 期刊:
- 影响因子:4.6
- 作者:
Sheng Yao;James K. Mills;Ihab Abu Ajamieh;Hai Li;Xianmin Zhang - 通讯作者:
Xianmin Zhang
Hai Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hai Li', 18)}}的其他基金
Conference: NSF Workshop on Hardware-Software Co-design for Neuro-Symbolic Computation
会议:NSF 神经符号计算软硬件协同设计研讨会
- 批准号:
2338640 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CCF Core: Small: Hardware/Software Co-Design for Sustainability at the Edge
CCF 核心:小型:硬件/软件协同设计,实现边缘的可持续性
- 批准号:
2233808 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Exploiting Synergies Between Machine-Learning Algorithms and Hardware Heterogeneity for High-Performance and Reliable Manycore Computing
合作研究:CNS Core:Medium:利用机器学习算法和硬件异构性之间的协同作用实现高性能和可靠的众核计算
- 批准号:
1955196 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
NSF Convergence Accelerator Track D: A Trusted Integrative Model and Data Sharing Platform for Accelerating AI-Driven Health Innovation
NSF 融合加速器轨道 D:加速人工智能驱动的健康创新的可信集成模型和数据共享平台
- 批准号:
2040588 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Cross-Platform Solutions for Pruning and Accelerating Neural Network Models
SHF:小型:用于修剪和加速神经网络模型的跨平台解决方案
- 批准号:
1744082 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: GAMBIT: Efficient Graph Processing on a Memristor-based Embedded Computing Platform
CSR:小型:协作研究:GAMBIT:基于忆阻器的嵌入式计算平台上的高效图形处理
- 批准号:
1717885 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
XPS: DSD: Collaborative Research: NeoNexus: The Next-generation Information Processing System across Digital and Neuromorphic Computing Domains
XPS:DSD:协作研究:NeoNexus:跨数字和神经形态计算领域的下一代信息处理系统
- 批准号:
1744077 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Cross-Platform Solutions for Pruning and Accelerating Neural Network Models
SHF:小型:用于修剪和加速神经网络模型的跨平台解决方案
- 批准号:
1615475 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
XPS: DSD: Collaborative Research: NeoNexus: The Next-generation Information Processing System across Digital and Neuromorphic Computing Domains
XPS:DSD:协作研究:NeoNexus:跨数字和神经形态计算领域的下一代信息处理系统
- 批准号:
1337198 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SMURFS: Statistical Modeling, SimUlation and Robust Design Techniques For MemriStors
合作研究:SMURFS:忆存的统计建模、模拟和鲁棒设计技术
- 批准号:
1311747 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
CAS-MNP: Understanding the Interactions Between Small Molecules and Plastic Nanoparticles for Environmental Remediation and Sensing Using Nuclear Magnetic Resonance
CAS-MNP:了解小分子和塑料纳米颗粒之间的相互作用,用于环境修复和核磁共振传感
- 批准号:
2304888 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Development of a Frontier Magnetic Resonance (MR) Imaging Technology As a Tool for Visualization and Quantified Vascular-Feature Measurement for Use in Brain and Behavioral Research on Small Animals
开发前沿磁共振 (MR) 成像技术作为可视化和量化血管特征测量的工具,用于小动物的大脑和行为研究
- 批准号:
10384839 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Magnetic resonance imaging physics for the study of small vessel disease in humans at ultra-high field
超高场磁共振成像物理研究人类小血管疾病
- 批准号:
2771125 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Studentship
ShEEP Request for Small Animal Magnetic Resonance Imaging System
ShEEP 请求小动物磁共振成像系统
- 批准号:
9910077 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Signal analysis of dynamic magnetic resonance image acquisitions for the study of subtle blood-brain-barrier changes in small vessel disease
动态磁共振图像采集的信号分析用于研究小血管疾病中细微的血脑屏障变化
- 批准号:
2096671 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Studentship
Research on innovative signal analysis for real-time magnetic resonance imaging of extremely small areas
极小区域实时磁共振成像创新信号分析研究
- 批准号:
18H03259 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of small molecule screening assays for amyloid beta peptide and tau protein using surface plasmon resonance and photo induced cross linking
使用表面等离振子共振和光诱导交联开发淀粉样蛋白 β 肽和 tau 蛋白的小分子筛选测定法
- 批准号:
466998-2014 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Industrial R&D Fellowships (IRDF)
Developments of ultrasonic transducer with two resonance frequencies and innovative transmit-receive method for small-scale ultrasonic diagnostic equipment
开发具有两个谐振频率的超声换能器和用于小型超声诊断设备的创新发射-接收方法
- 批准号:
15K13995 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Development of small molecule screening assays for amyloid beta peptide and tau protein using surface plasmon resonance and photo induced cross linking
使用表面等离振子共振和光诱导交联开发淀粉样蛋白 β 肽和 tau 蛋白的小分子筛选测定法
- 批准号:
466998-2014 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Industrial R&D Fellowships (IRDF)
Development of small molecule screening assays for amyloid beta peptide and tau protein using surface plasmon resonance and photo induced cross linking
使用表面等离振子共振和光诱导交联开发淀粉样蛋白 β 肽和 tau 蛋白的小分子筛选测定法
- 批准号:
466998-2014 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Industrial R&D Fellowships (IRDF)