Noncommutative Geometry Festival 2020
2020 年非交换几何节
基本信息
- 批准号:1955305
- 负责人:
- 金额:$ 3.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2021-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The 2020 Noncommutative Geometry Festival will be held at Dartmouth College in Hanover, New Hampshire, from August 10-14. This award provides support, especially for graduate students, early-career researchers and researchers who are members of underrepresented groups, to attend the conference which will have international participation by leading researchers in the field. The rapid growth, breadth and technical nature of noncommutative geometry, which can make it hard for beginning researchers to enter, has given rise to a growing need for an annual meeting specifically dedicated to noncommutative geometry and its many applications, in both mathematics and physics. The theme of the conference this year will be: "Noncommutative Geometry, Groupoids and Index Theory”.The goals of the conference are to highlight some of the most significant recent advances in noncommutative geometry, identify promising new research directions, and acquaint graduate students and early-career researchers with the most current results and applications in the field. This year, topics will include the connections of noncommutative geometry with the theory of groupoids, such as the tangent groupoid and deformations to the normal cone, generalized and higher versions of the Atiyah-Singer index theory of partial differential operators, condensed matter physics, and more. More information about the conference can be found at the following website https://math.dartmouth.edu/~ncgf2020/This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
2020年非对易几何节将于8月10日至14日在新罕布什尔州汉诺威的达特茅斯学院举行。该奖项提供支持,特别是为研究生,早期职业研究人员和代表性不足的群体成员的研究人员提供支持,以参加该领域领先研究人员的国际参与会议。非对易几何的快速发展,广度和技术性质,这可能使它很难开始研究人员进入,已经引起了一个专门致力于非对易几何及其在数学和物理学的许多应用的年度会议的需求不断增长。今年会议的主题是:“非交换几何、群胚和指数理论”,会议的目标是突出非交换几何的一些最重要的最新进展,确定有前途的新研究方向,并使研究生和早期职业研究人员熟悉该领域的最新成果和应用。今年,主题将包括非交换几何与群胚理论的联系,如正切群胚和变形的正常锥,广义和更高版本的Atiyah-Singer偏微分算子指数理论,凝聚态物理等。有关会议的更多信息可以在以下网站www.example.com上找到https://math.dartmouth.edu/~ncgf2020/This奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Trout其他文献
John Trout的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Trout', 18)}}的其他基金
Collaborative Proposal: Model Knowledge and Scientific Judgment
协作提案:模型知识和科学判断
- 批准号:
0327104 - 财政年份:2003
- 资助金额:
$ 3.5万 - 项目类别:
Fixed Amount Award
Strict Quantization, Elliptic Operators, and E-Theory
严格量化、椭圆算子和 E 理论
- 批准号:
0071120 - 财政年份:2000
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Topological Index for Proper Actions, Asymptotic Homomorphisms and Equivariant E-Theory
数学科学:适当作用的拓扑索引、渐近同态和等变 E 理论
- 批准号:
9706767 - 财政年份:1997
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
- 批准号:
EP/Y037162/1 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Research Grant
Computational Tropical Geometry and its Applications
计算热带几何及其应用
- 批准号:
MR/Y003888/1 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Fellowship
Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
- 批准号:
2333970 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
RTG: Numbers, Geometry, and Symmetry at Berkeley
RTG:伯克利分校的数字、几何和对称性
- 批准号:
2342225 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
- 批准号:
2401164 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
- 批准号:
2401472 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
- 批准号:
2402099 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Fellowship Award
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
- 批准号:
2340341 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant