Ergodic Properties of Smooth Systems on Manifolds
流形上光滑系统的遍历性质
基本信息
- 批准号:1956310
- 负责人:
- 金额:$ 16.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project concerns the chaotic properties of smooth dynamical systems. Smooth dynamical systems may exhibit chaotic behavior, this is where the future evolution of the systems is strongly independent of its present state and the evolution behaves like a sequence of independent coin tosses. The principal investigator plans to study such chaotic behavior for a wide class of natural dynamical systems. The developed methods will result in progress in the understanding of fundamental dynamical phenomena, with possible applications to other mathematical fields such as geometry and number theory, and also to the natural sciences. The principal investigator also plans to be involved in synergistic activities including organizing conferences and working with graduate students and postdocs.Chaotic properties of (uniformly) hyperbolic systems are by now well understood. Much less is known for partially hyperbolic systems, especially those with non-trivial (fast) growth on the center space. The principal investigator plans to create a general framework for studying K and Bernoulli properties for partially hyperbolic systems, and also plans to study mixing and spectral properties of parabolic systems, trying to further develop a general theory for systems of polynomial orbit growth.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究计画主要探讨光滑动力系统的混沌特性。光滑动力系统可能表现出混沌行为,这是系统的未来演化与其当前状态强烈无关,并且演化表现得像一系列独立的硬币投掷。首席研究员计划研究一大类自然动力系统的混沌行为。所开发的方法将导致进步的基本动力学现象的理解,与可能的应用到其他数学领域,如几何和数论,以及自然科学。 首席研究员还计划参与协同活动,包括组织会议,并与研究生和博士后合作。(一致)双曲系统的混沌特性现在已经很好地理解。对于部分双曲系统,特别是那些在中心空间上具有非平凡(快速)增长的系统,所知要少得多。 首席研究员计划为研究部分双曲系统的K和Bernoulli性质创建一个通用框架,并计划研究抛物系统的混合和光谱性质,试图进一步发展多项式轨道增长系统的一般理论。该奖项反映了美国国家科学基金会的法定使命,并被认为是值得通过利用基金会的智力价值和更广泛的影响审查进行评估来支持的的搜索.
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lebesgue spectrum of countable multiplicity for conservative flows on the torus
环面上保守流的可数重数勒贝格谱
- DOI:10.1090/jams/970
- 发表时间:2021
- 期刊:
- 影响因子:3.9
- 作者:Fayad, Bassam;Forni, Giovanni;Kanigowski, Adam
- 通讯作者:Kanigowski, Adam
Kakutani equivalence of unipotent flows
单能流的角谷等价
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:2.5
- 作者:Kanigowski, A;Vinhage, K;Wei, D.
- 通讯作者:Wei, D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Kanigowski其他文献
Horocycle flow on negative variable curvature surface is standard
负变曲率表面上的四轮循环流是标准的
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Adam Kanigowski;Kurt Vinhage;Daren Wei - 通讯作者:
Daren Wei
Bernoulli property for homogeneous systems
齐次系统的伯努利性质
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Adam Kanigowski - 通讯作者:
Adam Kanigowski
Bernoulli property for certain skew products over hyperbolic systems
双曲系统上某些偏斜积的伯努利性质
- DOI:
10.1090/tran/8486 - 发表时间:
2019 - 期刊:
- 影响因子:1.3
- 作者:
Changguang Dong;Adam Kanigowski - 通讯作者:
Adam Kanigowski
On isomorphism problem for von Neumann flows with one discontinuity
- DOI:
10.1007/s11856-018-1701-5 - 发表时间:
2018-05-11 - 期刊:
- 影响因子:0.800
- 作者:
Adam Kanigowski;Anton V. Solomko - 通讯作者:
Anton V. Solomko
Correction to: Flexibility of statistical properties for smooth systems satisfying the central limit theorem
- DOI:
10.1007/s00222-022-01137-6 - 发表时间:
2022-08-01 - 期刊:
- 影响因子:3.600
- 作者:
Dmitry Dolgopyat;Changguang Dong;Adam Kanigowski;Péter Nándori - 通讯作者:
Péter Nándori
Adam Kanigowski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Kanigowski', 18)}}的其他基金
Conference: Maryland Dynamics Conference
会议:马里兰动力学会议
- 批准号:
2409251 - 财政年份:2024
- 资助金额:
$ 16.15万 - 项目类别:
Standard Grant
Ergodic Properties of Smooth Systems on Manifolds
流形上光滑系统的遍历性质
- 批准号:
2247572 - 财政年份:2023
- 资助金额:
$ 16.15万 - 项目类别:
Standard Grant
相似海外基金
Ergodic Properties of Smooth Systems on Manifolds
流形上光滑系统的遍历性质
- 批准号:
2247572 - 财政年份:2023
- 资助金额:
$ 16.15万 - 项目类别:
Standard Grant
Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
- 批准号:
2309779 - 财政年份:2023
- 资助金额:
$ 16.15万 - 项目类别:
Standard Grant
Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
- 批准号:
2309780 - 财政年份:2023
- 资助金额:
$ 16.15万 - 项目类别:
Standard Grant
Rigid Structures and Statistical Properties of Smooth Systems
光滑系统的刚性结构和统计特性
- 批准号:
2154796 - 财政年份:2022
- 资助金额:
$ 16.15万 - 项目类别:
Standard Grant
Topics in Smooth Ergodic Theory: Stochastic Properties, Thermodynamic Formalism, Coexistence
平滑遍历理论主题:随机性质、热力学形式主义、共存
- 批准号:
2153053 - 财政年份:2022
- 资助金额:
$ 16.15万 - 项目类别:
Standard Grant
Properties and function of TRPC proteins in vascular smooth muscle using transgenic mice
使用转基因小鼠研究血管平滑肌中 TRPC 蛋白的特性和功能
- 批准号:
BB/J007226/1 - 财政年份:2012
- 资助金额:
$ 16.15万 - 项目类别:
Research Grant
Analysis of physical properties of actin filaments during differentiation of smooth muscle cells
平滑肌细胞分化过程中肌动蛋白丝的物理特性分析
- 批准号:
24700454 - 财政年份:2012
- 资助金额:
$ 16.15万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Mechanical Properties Of Human Airway Smooth Muscle In Vitro And In Vivo: Normal Structure And Function And Abnormalities In Asthma
人体气道平滑肌的体外和体内机械特性:正常结构和功能以及哮喘中的异常
- 批准号:
189556 - 财政年份:2009
- 资助金额:
$ 16.15万 - 项目类别:
Operating Grants
Simulations of Agglomerate Collisions with Smooth Particle Hydrodynamics - Realistic Material Properties and Sticking, Bouncing and Fragmentation Statistics
使用光滑粒子流体动力学模拟附聚物碰撞 - 真实的材料特性以及粘着、弹跳和破碎统计
- 批准号:
35040788 - 财政年份:2006
- 资助金额:
$ 16.15万 - 项目类别:
Research Units
Measurement of mechanical properties of vascular smooth muscle and blood vessel wall as a model of functional materials
作为功能材料模型测量血管平滑肌和血管壁的机械性能
- 批准号:
16360052 - 财政年份:2004
- 资助金额:
$ 16.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




