Rigid Structures and Statistical Properties of Smooth Systems
光滑系统的刚性结构和统计特性
基本信息
- 批准号:2154796
- 负责人:
- 金额:$ 37.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The aim of this project is to discover new phenomena in the area of dynamical systems. Dynamical systems ("dynamics," for short) is the study of motion, and in particular motion that is dictated by an unchanging set of rules, such as the forces controlling planetary motion. Well-known experimental phenomena in dynamics such as chaotic trajectories combined with stable motion have been observed experimentally but are far from being fully understood from a theoretical perspective. The project will address several themes. The first is the stability of dynamical systems - that is, how small perturbations in initial conditions and even in the rules themselves affect the outcome of the evolution. Understanding robust mechanisms for stability is a fundamental pursuit, and the investigator has already discovered several novel such mechanisms. The second theme is genericity, or loosely to understand what dynamical features are present in a typical system. The third theme is rigidity, the study of symmetries of dynamical systems and those systems with optimal symmetries, the so-called ideal crystals of dynamics. An important aspect of the project is to further interaction between mathematical and adjacent scientific communities, such as physics. The PI has already collaborated on questions surrounding the design of particle accelerators and is currently collaborating with a physicist on studying the quantum dynamics behind the emergence of black holes. Furthermore, the PI has given several public lectures on dynamics and has written in the popular press about the work of mathematicians. The PI will expand these activities in the coming years. The project provides research training opportunities for undergraduate and graduate students.This project considers questions in smooth dynamical systems all the way from a general perspective, in particular those about genericity of certain foliation dynamics, to a local one, focused on the rigidity of specific families of group actions. These questions are motivated by well-known conjectures, but also by the desire to discover and explore new dynamical phenomena. The first circle of questions centers around Boltzmann’s original ergodic hypothesis as well as the modern and related conjectures of Pugh and Shub about stable ergodicity. The basic question they address is when one might expect a dynamical system to be ergodic. An important question that remains open is the symplectic version of the C1 Pugh-Shub conjecture, which the investigator will attack. The strategy to prove this conjecture involves interesting and timely aspects of the study of hyperbolic and partially hyperbolic dynamics and expanding foliations. A second project investigates the topological and statistical properties of the unstable foliations of partially hyperbolic systems, and in particular Anosov diffeomorphisms with a partially hyperbolic splitting. A third project concerns the rigidity properties of partially hyperbolic abelian actions. Here the action of the su-holonomy group plays an important role: in the actions considered, the joint action of the ambient, partially hyperbolic dynamics and the su-holonomy group are constrained by certain solvable groups for which known rigidity results described above hold.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目的目的是发现动力系统领域的新现象。动力系统(简称“动力学”)是对运动的研究,特别是由一套不变的规则所规定的运动,例如控制行星运动的力。动力学中众所周知的实验现象,如混沌轨迹与稳定运动相结合,已经在实验上观察到了,但从理论上还远未完全理解。该项目将涉及几个主题。第一个是动力系统的稳定性--即初始条件甚至规则本身的微小扰动如何影响进化的结果。理解稳健的稳定机制是一项基本的追求,研究人员已经发现了几种新的此类机制。第二个主题是概括性,或者说粗略地理解一个典型系统中存在哪些动力学特征。第三个主题是刚性,研究动力系统的对称性和那些具有最佳对称性的系统,即所谓的动力学理想晶体。该项目的一个重要方面是进一步促进数学和邻近科学界之间的互动,例如物理学。PI已经在围绕粒子加速器设计的问题上进行了合作,目前正在与一名物理学家合作研究黑洞出现背后的量子动力学。此外,国际数学家协会还举办了几次关于动力学的公开讲座,并在大众媒体上发表了有关数学家工作的文章。国际和平协会将在未来几年扩大这些活动。这个项目为本科生和研究生提供了研究培训的机会。这个项目从一般的角度来考虑光滑动力系统中的问题,特别是关于某些叶状动力学的一般性的问题,到局部的问题,集中在特定的群体作用族的刚性上。这些问题的动机是众所周知的猜想,也是发现和探索新的动力学现象的愿望。第一个问题围绕着玻尔兹曼最初的遍历假设,以及Pugh和Shub关于稳定遍历的现代和相关猜想。它们解决的基本问题是,什么时候人们可能会期望一个动力系统是遍历的。一个仍然悬而未决的重要问题是C1Pugh-Shub猜想的辛版本,研究人员将对其进行攻击。证明这一猜想的策略涉及双曲和部分双曲动力学以及扩展叶的有趣和及时的研究方面。第二个项目研究了部分双曲系统的不稳定叶的拓扑和统计性质,特别是具有部分双曲分裂的Anosov微分同胚。第三个项目涉及部分双曲阿贝尔作用量的刚性性质。在这里,超完整力学小组的作用起着重要作用:在所考虑的作用中,环境、部分双曲动力学和超完整力学小组的联合作用受到某些可解群的约束,上述已知刚性结果适用于这些可解群。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Absolute continuity, Lyapunov exponents, and rigidity II: systems with compact center leaves
绝对连续性、李亚普诺夫指数和刚度 II:具有紧凑中心叶的系统
- DOI:10.1017/etds.2021.42
- 发表时间:2022
- 期刊:
- 影响因子:0.9
- 作者:AVILA, A.;VIANA, MARCELO;WILKINSON, A.
- 通讯作者:WILKINSON, A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anne Wilkinson其他文献
The Effectiveness of a Tailored Faculty Development Program for Undergraduate Mentoring and Its Impact on Mentor’s Perceptions: A Mixed Methods Study
本科生导师定制教师发展计划的有效性及其对导师看法的影响:混合方法研究
- DOI:
10.7759/cureus.58863 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Smita Pakhmode;Yamini V. Pusdekar;Madhur Gupta;Anne Wilkinson;S. Uppu;Sheel Wasnik - 通讯作者:
Sheel Wasnik
How Graduate Interior Design Programs Prepare Emerging Educators to Teach
室内设计研究生课程如何为新兴教育工作者做好教学准备
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Anne Wilkinson - 通讯作者:
Anne Wilkinson
The Histopathological Spectrum of Scrotal Lesions in a Tertiary Care Hospital: A Cross-Sectional Study
三级医院阴囊病变的组织病理学谱:横断面研究
- DOI:
10.7759/cureus.52767 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Apara Desai;Anne Wilkinson - 通讯作者:
Anne Wilkinson
Palliative Care Nursing
姑息治疗护理
- DOI:
10.1891/9780826127198.0001 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Anne Wilkinson;Deborah Witt Sherman;Tonie Metheny;M. Matzo - 通讯作者:
M. Matzo
Financing of care for fatal chronic disease: opportunities for Medicare reform.
致命慢性病护理的融资:医疗保险改革的机会。
- DOI:
10.1136/ewjm.175.5.299 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
J. Lynn;Anne Wilkinson;L. Etheredge - 通讯作者:
L. Etheredge
Anne Wilkinson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anne Wilkinson', 18)}}的其他基金
Ergodicity, Rigidity, and the Interplay Between Chaotic and Regular Dynamics
遍历性、刚性以及混沌动力学和规则动力学之间的相互作用
- 批准号:
1900411 - 财政年份:2019
- 资助金额:
$ 37.57万 - 项目类别:
Standard Grant
Robust and generic mechanisms in smooth dynamics
平稳动力学中稳健且通用的机制
- 批准号:
1402852 - 财政年份:2014
- 资助金额:
$ 37.57万 - 项目类别:
Continuing Grant
Conference "From Dynamics to Complexity"
“从动态到复杂性”会议
- 批准号:
1201398 - 财政年份:2012
- 资助金额:
$ 37.57万 - 项目类别:
Standard Grant
Partial Hyperbolicity and the Structure of Diffeomorphism Groups
偏双曲性和微分同胚群的结构
- 批准号:
0701018 - 财政年份:2007
- 资助金额:
$ 37.57万 - 项目类别:
Continuing Grant
International Workshop on Global Dynamics beyond Uniform Hyperbolicity
超越统一双曲性的全球动力学国际研讨会
- 批准号:
0552282 - 财政年份:2006
- 资助金额:
$ 37.57万 - 项目类别:
Standard Grant
Conference on Robustness and Partial Hyperbolicity
鲁棒性和部分双曲性会议
- 批准号:
0335551 - 财政年份:2003
- 资助金额:
$ 37.57万 - 项目类别:
Standard Grant
相似海外基金
PriorCircuit:Circuit mechanisms for computing and exploiting statistical structures in sensory decision making
PriorCircuit:在感官决策中计算和利用统计结构的电路机制
- 批准号:
EP/Z000599/1 - 财政年份:2024
- 资助金额:
$ 37.57万 - 项目类别:
Research Grant
Developments of statistical compression technology for massive data having tensor structures
张量结构海量数据统计压缩技术进展
- 批准号:
22K19769 - 财政年份:2022
- 资助金额:
$ 37.57万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Geometry of turbulent structures and its development into statistical theory
湍流结构的几何及其统计理论的发展
- 批准号:
22K03930 - 财政年份:2022
- 资助金额:
$ 37.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modelling modern data objects: statistical methods for high-dimensionality and intricate correlation structures
现代数据对象建模:高维和复杂相关结构的统计方法
- 批准号:
RGPIN-2020-06941 - 财政年份:2022
- 资助金额:
$ 37.57万 - 项目类别:
Discovery Grants Program - Individual
Statistical machine learning for dependent data: symmetry and novel dependence structures
相关数据的统计机器学习:对称性和新颖的相关结构
- 批准号:
RGPAS-2020-00095 - 财政年份:2022
- 资助金额:
$ 37.57万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Statistical machine learning for dependent data: symmetry and novel dependence structures
相关数据的统计机器学习:对称性和新颖的相关结构
- 批准号:
RGPIN-2020-04995 - 财政年份:2022
- 资助金额:
$ 37.57万 - 项目类别:
Discovery Grants Program - Individual
ERI: Enhancing Statistical Energy Analysis for Nonlinear Vibrating Structures Using Statistical Entropy
ERI:使用统计熵增强非线性振动结构的统计能量分析
- 批准号:
2138625 - 财政年份:2022
- 资助金额:
$ 37.57万 - 项目类别:
Continuing Grant
Statistical machine learning for dependent data: symmetry and novel dependence structures
相关数据的统计机器学习:对称性和新颖的相关结构
- 批准号:
RGPAS-2020-00095 - 财政年份:2021
- 资助金额:
$ 37.57万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
CAREER: Statistical Mechanics of Cellular Structures
职业:细胞结构的统计力学
- 批准号:
2046683 - 财政年份:2021
- 资助金额:
$ 37.57万 - 项目类别:
Continuing Grant
Statistical Network Analysis: Model Selection, Differential Privacy, and Dynamic Structures
统计网络分析:模型选择、差分隐私和动态结构
- 批准号:
EP/V007556/1 - 财政年份:2021
- 资助金额:
$ 37.57万 - 项目类别:
Research Grant